

In-Situ Collaborative Robotics in Confined Spaces

Garrison Johnston¹, Andrew Orekhov², Colette, Abah¹, Ramkumar Natarajan², Howie Choset², Nabil Simaan¹

¹ ARMA Lab, Dept. of Mech. Engineering, Vanderbilt University, Nashville, TN 37235 – CMMI #1734461 ² Biorobotics Lab, Carnegie Mellon University, Pittsburgh, PA 15213 – CMMI #1734360

Motivation

- Industrial workers often perform manufacturing or service tasks in tight spaces.
- Cooperative manufacturing in confined spaces demands cooperation modes and levels of dexterity, sensing, and safety that exceed capabilities of existing robotic systems.
- Goal: Develop and validate new technologies including associated control, sensing and planning to enable cooperative manipulation in confined spaces.

Scientific Merit:

- Introduce a new architecture of In-Situ Collaborative Robots (ISCR) in confined spaces.
- Facilitate physical interaction between the user and the robot using the robot's flexibility, contact sensing and localization, and proximity measurements along body.
- Modeling, compliant motion control, and planning with contact for ISCRs.

Illustrative example of a cooperative robot assisting a human user in a manufacturing operation in a confined space.

Continuum Segment Compliance Modeling

- The Lie group formulation we use for modeling the robot kinematics/statics [3] enables computing the continuum segment compliance matrix in closed form from the principle of virtual work.
- Changing the modal function order allows for trade-off between computation time and model accuracy to be made.

Development of an approach for multi-point interaction between the user and the robot.

Manipulator Design

Manipulator Specifications

- 11 DOF
- Approx. 2 m reach
- 1.8 Kg payload at full reach

Evaluation tasks

Shape Sensing with General String Encoder Routing [4,5]

- We present a kinematic model to solve for the deflected continuum segment shape using general string encoder routing and show how optimize string routings to reduce sensing error.
- Experimental validation shows mean and max end disk position error of 2.0% and 4.8% of arc length.

Avg. (Max) Absolute Position (mm) and Orientation Errors (°), specified for the end disk (s = L) and the 3rd disk ($s = s_3$)

	End Disk	Third Disk	Constant
	Routing	Routing	Curvature
$\bar{p}_e(L), \max\left(p_e(L)\right)$	5.9(14.4)	6.0(13.8)	56.2(104.9)
$\bar{p}_e(s_3), \max\left(p_e(s_3)\right)$	3.8(10.2)	3.3(9.2)	31.8(58.6)
$\bar{\theta}_e(L), \max\left(\theta_e(L)\right)$	1.5(8.6)	1.5(3.9)	3.6(14.4)
$\overline{\theta}_e(s_3), \max\left(\theta_e(s_3)\right)$	2.0(6.0)	1.6(4.2)	15.4(28.1)

Torque-Limited Manipulation Planning through Bracing

Interleaving Graph Search and Trajectory Optimization for planning through bracing Typically non-convex subset Low dimensional graph search: Kinematically feasible trajectory in manipulator Cost of configuration space Decides what

Sanding, caulking, and pipe assembly.

Software Architecture

trajectory optimization solution drives the raph search	Interleaved High dimensional trajectory optimization: Dynamically feasible, bounded torque trajectory in state space (joint angles and joint velocity)	trajectory optimizations to run with what seeds		
	Typically dynamics (derivatives) variables			
Variable Smooth Contact Model				
even when not in contact) to tight (contact force only				

when in contact $f(\mathbf{x}) = ke^{(1)}$

Contact Implicit Trajectory Optimization Simultaneous optimization of trajectory to reach the goal and parameters of the contact model. We use SCvx (Successive Convexification) to solve the optimization.

$$\begin{split} \min_{\boldsymbol{\tau},k,\alpha} & k^2 - \alpha^2 + \|\mathbf{x}(T) - \mathbf{x}_{\text{goal}}\|^2 \\ & + \int_0^T \|\boldsymbol{\tau}(t)\|^2 dt \\ \text{s.t.} & \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\boldsymbol{\tau}) \\ & \mathbf{x}(0) = \mathbf{x}_0, \mathbf{x}(T) \in \mathbf{x}_{\text{goal}} \\ \end{split}$$
State contains
$$\begin{aligned} & |\dot{\mathbf{x}}(t)| \leq \dot{\mathbf{x}}_{\text{lim}} \\ & |\boldsymbol{\tau}(t)| \leq \boldsymbol{\tau}_{\text{lim}}, \boldsymbol{\tau} \in \mathbf{U} \\ \end{aligned}$$
Joint torques

Planning through bracing for a long UR robot (9 DOF)

Start configuration

Manipulator swinging to reach inside the wingbox with minimal joint torque

Climbing the step extrusion inside the wingbox

Publications

[1] C. Abah, A. L. Orekhov, G. L. H. Johnston, P. Yin, H. Choset, and N. Simaan, "A Multi-modal Sensor Array for Safe Human-Robot Interaction and Mapping," 2019 IEEE International Conference on Robotics and Automation (ICRA), May 2019.

[2] C. Abah, A. L. Orekhov, G. L. H. Johnston, N. Simaan, "A Multi-Modal Sensor Array for Human-Robot Interaction and Confined Spaces Exploration Using Continuum Robots" in IEEE Sensors Journal, vol. 22, no. 4, pp. 3585-3594, Feb. 15, 2022.

Proximity Sensor Mapping Results

Used proximity sensors to map a mock confined space

9.83 mm RMSE in mapping

Used touch and proximity sensors to demonstrate HRI

with the continuum segments

[3] A. L. Orekhov and N. Simaan, "Solving Cosserat Rod Models via Collocation and the Magnus Expansion," 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 8653-8660.

[4] A. L. Orekhov, J. Seo, and N. Simaan, "Kinematics and Shape Sensing of a Collaborative Continuum Robot," in IROS 2020 workshop on "Application-Oriented Modelling and Control of Soft Robots," Nov. 2020.

[5] A. L. Orekhov, E. Ahronovich, N. Simaan, "Lie Group Formulation and Sensitivity Analysis for Shape Sensing of Variable Curvature Continuum Robots with General String Encoder Routing", IEEE Transactions on Robotics. (under review)

[6] G. L. H. Johnston, A. L. Orekhov, & N. Simaan. Kinematic Modeling and Compliance Modulation of Redundant Manipulators Under Bracing Constraints. 2020 IEEE International Conference on Robotics and Automation (ICRA), 4709–4716.