

Towards optimal gait assistance

Human-in-the-loop optimization

Neuromechanical & simulation

NRI PI meeting Feb 28, 2020 Seungmoon Song

PIs: Chris Atkeson and Steve Collins

http://biomechatronics.stanford.edu/

smsong@stanford.edu
http://seungmoon.com

CMMI-1734449: NIR: INT: Individualized Co-Robotics

Objective: Improve normal walking

To get to target location:

- Safely
- With minimum effort
- In a minimum time

Can ankle assistance increase preferred walking speed?

Method: Human-in-the-loop optimization

[Zhang et al., Science, 2017]

Measure preferred walking speed: "Comfortable speed" on self-paced treadmill

Self-pacing code: https://github.com/smsong/self-paced-treadmill

Experiment: HILO for faster walking speed (N=10)

Two days of:

warm up

(4 min)

(9 samples) x (8 generations)

human-in-the-loop optimization (72 min)

random order reverse order

QS

validation
(26 min)

Instruction: "walk at a comfortable speed"

Optimize: Four torque parameters

Validation:

- Normal shoes
- Zero torque
- Optimized torque
- General torque
- Sham torque

Main result: Walking speed

Self-selected walking speed increased by 42% (6 ~ 91%)

Change in COT varied across subjects (-31 ~ +78%)

Fast walking can be induced in different ways

Normal walking

Speed: 1.2 m s⁻¹

Optimized torque

Speed: +82%, COT: -20%

Optimized torque

Speed: +91%, COT: +78%

Implications

Ankle assistance can increase self-selected walking speed

Only focusing on speed in HILO may result in bad assistance

- Multi-objective HILO
- HILO with domain knowledge
 - Expert guided training
 - Smart exploration space

•

smsong@stanford.edu

http://seungmoon.com

CMMI-1734449: NIR: INT: Individualized Co-Robotics

http://biomechatronics.stanford.edu/

Individualized Co-Robotics for Gait Assistance

Thu Nguyen

Seungmoon Song

Steven **Collins**

Motor learning during walking in exoskeletons

Katherine Poggensee

Sabrina **Abram**

Task-invariant learning framework for exoskeletons

Ge Lv

Haosen Xing

Seungmoon Song

CMMI-1734449: NIR: INT: **Individualized Co-Robotics**