
Industrial Use (of ACL2) for Hardware Verification

Warren A. Hunt, Jr.

Joint work with: Anna Slobodova, Bob Boyer, Shilpi Goel,
Marijn Heule, Matt Kaufmann, J Moore, Rob Sumners,

Ivan Sutherland, Sol Swords, and my PhD students

October, 2019

Computer Sciences Department
University of Texas

2317 Speedway, M/S D9500
Austin, TX 78712-0233

hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

Centaur Technology, Inc.
7600-C N. Capital of Texas Hwy

Suite 300
Austin, Texas 78731

hunt@centtech.com
TEL: +1 512 418 5797
FAX: +1 512 794 0717

October 8, 2019 1 / 26

Our Collaboration with Government and Industry

Our own research includes:

Development of core technologies

Application of these technologies in different domains

Commercial Use: Validation of processor designs

October 8, 2019 2 / 26

What is Hardware Verification?

What is Formal Hardware Verification?

Demonstrating that design models have desired functional properties:

Combinational circuit implements some function (e.g., addition)

Sequential circuit satisfies some property (e.g., no deadlock)

A design implements a specification (e.g., cooperating FMs
implement an ISA)

User-facing physical realization provides predictable and secure
operation

To assure desired functionality, one must also account for:

Circuit delays – depends on implementation technology

Power consumption – concerns the size, speed, and work

Transient errors – from energy events

We present a simple example, common contemporary features, validation
procedures and mechanisms, and future needs.

October 8, 2019 3 / 26

What is Hardware Verification?

The Verification Problem

Different specification languages are used at each level.

Systems: Linux, Web, Internet, Storage Systems
Lanugages: C, C++, Java, Perl, Swift, models
ISA: x86, ARM, PowerPC, RISC-V, ...
Architecture: Drawings, Charts, Graphs, Natural Language
Microarchitectures: More diagrams, charts, etc.
Register-transfer: VHDL, Verilog
Netlist: VHDL, Verilog
Transistor Schematic: “Stick diagrams”
Layout: Colored Polygons

The Size

C, C++ models: millions of pages
Binary models: billions of pages
ISA models: hundreds of pages
RTL models: tens of thousands of pages
Netlist models: millions of pages

October 8, 2019 4 / 26

What is Hardware Verification?

When I Say Specification or Verification, I Mean

Specifying the operation of com-
puting systems can be precise.

Specifications are given as
mathematical expressions.

Implementation are also
given as mathematical
expressions.

By verification, I mean rigorous
mathematical proof.

Correctness proofs for
computing systems are often
very cost effective.

Don’t get me wrong, I’m a realis-
tic engineer.

For instance, an architecture
drawing conveys lots of
information in a very
compact form.

Such documents are of great
use for communicating a
useful abstraction of system
operation.

But as a design specification
such documents are
insufficient.

October 8, 2019 5 / 26

What is Hardware Verification?

A Typical Engineering Design Example

Consider the task of determining the maximum range of a rifle.

Given that the end of the rifle muzzle is at ground level, what muzzle
inclination angle (between 0 and π/2) gives the maximum range.

Our analysis is unrealistically simple: no air resistance, flat plane, etc.

t = V0sin(θ)/g (1)

d = 2V0cos(θ)t (2)

d =
2V0

2cos(θ)sin(θ)

g
=

V0
2sin(2θ)

g
(3)

To discover the max distance, we take the derivative with respect to θ.

0 = cos(2θ) (4)

The solution of π/4 can be determined without any testing! In fact, the
solution works for any initial velocity and any gravitational value.

October 8, 2019 6 / 26

What is Hardware Verification?

A Simple Computer Design Problem Example

Consider a design problem.

Specification: design a
circuit that doubles a
number.

Solution: use an “available”
adder and connect the
number to be doubled into
both of the adder inputs.

Verification: hand-wave
argument.

How can such a simple problem
not have an obvious solution?

What is wrong?

Do we lack the
mathematics?

We can “overload” algebra to
model our intent and design.

Specification: 2i

Implementation: i + i

We can prove the correctness of
our design by mathematical proof.

i + i = 2i
i + i = i + 1i
i + i = i + i + 0i
i + i = i + i + 0
i + i = i + i

This verifies our implementation
for all i .

October 8, 2019 7 / 26

Super Simple Adder Verification

Super Simple Adder Verification

Consider a simple, 64-bit adder design – it should be trivial to verify.
But, is it?

There are 128 Boolean inputs, so it requires 2128 tests.

That’s 340,282,366,920,938,463,463,374,607,431,768,211,456 tests!

We don’t perform this kind of comparisons; we compare the
specification equations to design equations.

We can perform such an adder comparison in milliseconds.

Our point? It’s often much faster to do analysis using algebra than
attempting exhaustive simulation.

We have scaled this approach to entire microprocessors.

And, we do the same thing with (compiled) binary programs.

October 8, 2019 8 / 26

Is Machine-Checked Formal Verification Even Possible?

Is Complete Netlist Verification Possible?

When a design is simplified to a netlist, it is possible to mechanically verify
that a transistor- or gate-level netlist of a processor design meets its
abstract functional specification.

Boolean ISA
Specification

Natural, Integer, FP, etc.
Interpretations

MA State

MA Specification

ISA State

Projection

Memory
Regs

Flags

PC

Memory
Regs

Flags

PC

October 8, 2019 9 / 26

FV Can Work: The FM9001 Microprocessor, circa 1990

The FM9001 Microprocessor

The FM9001 is a general-purpose, 32-bit microprocessor.

The FM9001 ISA is formally specified as an ISA-level interpreter.

The FM9001 design (including its test logic and I/O interface) was
formally described in using the formally-defined DE HDL.

The FM9001 was mechanically proven to meet its specification.

The design was mechanically translated into LSI Logic’s NDL.

Test vectors were shown to detect all (but one) stuck-at faults.

The FM9001 was manufactured by LSI Logic.

The FM9001 was tested extensively without ever observing an error.

Developing a fully, formally-verified microprocessor design is possible.

So, what’s the commercial story?

October 8, 2019 10 / 26

ARM, PowerPC, x86, and many others

ARM, PowerPC, RISC-V, x86, and many others

There are many ISAs, and these variants target specific markets.

Servers, workstations, and laptops use x86 (AMD, Intel, VIA)

Mobile, tablets use ARM and RISC-V solutions, but many vendors

No standards for special-purpose (graphics, network, auto) systems

Are commercial processor vendors using formal methods?

Yes: ARM, Boeing, Centaur, General Electric, Intel, IBM, Oracle,
Rockwell-Collins

FM research results appear in CAV, FMCAD, CADE, ITP, DAC, ...

Commercial users primarily use BDD- and SAT-based equivalence
checking, STE, model checking, and SMT.

In some cases, users steer theorem-proving systems to verify invariants,
and to compose observations made with more automatic techniques.

October 8, 2019 11 / 26

Contemporary Example

Contemporary Example

Recently, Oracle developed floating-point divider and square-root function
by using fast multiplier; guess made, answer improved, repeat 4 times.

On a 1000+ machines, DIV and SQ test suite took a month+ to run

As a result, design changes were carefully considered

And, bugs still appeared...

Decided to use ACL2, hired a graduate from our group.

Used our tools to read design into ACL2

Developed proof (finding bugs), complete verification runs in hours

Thus, design iteration cycle could be hours

Shrunk guess ROM to 40% of original; made fixes so it worked

Increased ROM size to 60% of original; reduced repeats to 3 times

Oracle’s new FP RTL could be checked in hours – no fear design
iterations occurred daily
This approach completely changed their floating-point design flow. At

Centaur, these proofs only take minutes.
October 8, 2019 12 / 26

Post-Silicon Debug

Post-Silicon Debug

Around 2000, IBM had designed and begun manufacturing of a multi-core,
Power PC product. In systems test, with dozens of machines running,
there were some machines that locked up.

Couldn’t reproduce problem reliably – took days to show itself

Couldn’t reproduce problem with simulation – far too slow

$100+ million of product stuck on factory floor

IBM contact formal methods group

Working from the design (netlist), FV engineers were able to exhibit a
trace of 120 steps that also caused a lockup

This effort took weeks, while all other debugging efforts continued

New silicon had to be manufactured

New silicon didn’t exhibit the problem

Never determined if the bug discovered was the actual problem, but it
changed something – and the problem disappeared!

These are powerful, post-silicon debug tools.
October 8, 2019 13 / 26

Contemporary Hardware Features

Contemporary Hardware Design

Companies specify, design, manufacture, and purvey, the largest and most
complex computer-hardware artifacts, such as the x86.

Such commercial hardware offerings include:

Enormous ISAs with tremendous complexity
Test logic; accounts for 5% – 10% of the final product
Microcode programs (50K, 100+ bit) for initialization and exceptions
Monitoring, CPU management, with an embedded processor
Configuration mechanisms, such as fuses and MSRs
Megabytes of internal memory
Purpose-built, multi-channel memory interfaces (up to 8 channels)
Timers and interrupt controllers
I/O interfaces, such as Ethernet, USB, SATA, PCI-Express, ...
Service interfaces, for in-field updates (e.g., recent Xeon bug)
Special modes, registers, and hardware interfaces for debug

Contemporary processors boot themselves; involves decompressing
microcode, clearing 1000s of registers, initializing memory system, etc.

October 8, 2019 14 / 26

Contemporary Hardware Features

VIA QuadCore Processor

Contemporary Example

Full X86-64 compatible four-core design

14nm technology, 1+ billion transistors, core is only 2mm2

AES, DES, SHA-1/256/384/512, and random-number generator

Built-in security processor

Runs 40 operating systems, four VMs

October 8, 2019 15 / 26

The Model Size of a Contemporary x86 Design

The Size of a Contemporary x86 Design

Industrial processor specifications provides more than the ISA.

Designs are (usually) specified in Verilog.

Designs are specified at the micro-architectural level.

Design specifications also must include a simulation environment.

Without environment, Centaur’s x86 specification is 1.4M lines of Verilog

Centaur’s 4-core x86 design 1B+ transistors; single core is less than 2mm2.

To read and process the specification:

Before model build, run tests with four Verilog simulation systems.

Takes ACL2 nine minutes to read Verilog and build its model: 2500
modules, 50 packages, multiple classes, 1700 parameter declarations

Unparameterize; resolve ranges; make wire declarations explicit;
eliminate some operators (++, –, ...), and many other simplifications

Thousands of little proofs (checks) are done during the build.

We find syntactic bugs – even after other simulators have run!

We find functional bugs regularly.
October 8, 2019 16 / 26

What is the Specification?

What is the Specification?

Contemporary processor architectures (e.g., the x86) are specified with
natural language, charts, graphs, tables, etc.

AMD, Intel x86 customer-oriented documentation exceeds 3000 pages
But, it’s nowhere close to sufficient to build a working x86 processor
There are 1000s of additional requirements held close by x86 vendors

Shilpi Goel (primary author), Warren Hunt, and Matt Kaufmann have
built an ACL2-based x86 specification that includes:

Modeling focus: x86 64-bit (Intel’s IA-32e) uniprocessor
Opcodes: 413 (user and system mode instructions)
Specification of paging and segmentation
Specified system state, e.g., Local and Global Descriptor Tables
User and system mode operation; system program verification possible
Concrete execution: 300,000 (system) to 3.3 million (user-only) IpS
Support for FV and debugging/dynamic instrumentation of x86 binary
Automatically generated documentation for users and developers
ACL2 x86 spec: 60K LoC (without macro expansion), about 240 files

October 8, 2019 17 / 26

What is the Specification?

Our X86 ISA Specification

Our x86 specification:

Is a compile-to specification

Is a build-to specification

Is a formal simulator of the x86 ISA

Provides the semantics for verifying x86 machine code

Provides a model that supports symbolic execution of x86 programs

Has been used to verify a zero-copy program; this involves paging and
reasoning about tens of memory accesses per instruction

Is being used by one x86 vendor

October 8, 2019 18 / 26

What is the Specification?

Design Flow, Augmented with Formal Verification

Layout

Concept

Transistor Level

performance

development

validation

development

timing analysis
power analysis

functional validation

Logic
Design

Circuit
Design

Dynamic
Validation

Layout

Testingtesting

system validation

development

Register-Transfer
Level

Microcode

Formal
Verification

Unit-level proofs
Microcode proofs

Reverse engineering
Algorithm development

RTL browser
Linter

EQ checker

Signal mapping

October 8, 2019 19 / 26

What is the Specification?

Example Properties Mechanically Verified

Centaur has specified 1000s of properties for their x86 implementation

Upon design update, properties (proofs) are (re-)checked using 100+
machines
Failures automatically reported to the FV group. Why the failure?

Spec error, Tool failure (capacity, orchestration, ...), new feature
Actual error in design

Determine root cause of error; if actual bug, designer alerted

What kind of properties are checked?
Data functional units - 1000+ instructions

Integer, media, floating-point, graphics
On a clock-by-clock basis, pipelined multipliers are reconfigured to
perform different sizes and types of multiplications – quite complex
string decompression (800 microinstructions), several nested loops
128-by-64-bit division (50 microinstructions), and so on...

Memory system properties
Memory system is the most complex part of a modern design
Verify invariant properties; e.g., atomic read-modify-write memory

Analyze clock trees & synthesis results; reverse-engineer timing paths
October 8, 2019 20 / 26

What is the Specification?

Verification Flow

October 8, 2019 21 / 26

So What?

So What?

These techniques save time, improve communications, reduce costs...

Question: can our approach be valuable to your organization?

Answer: Yes! especially when integrated into the design flow so that
verification results arrive in minutes or, at most, hours.

The cost savings are obvious. Our tools have found thousands of
bugs — many of which might have otherwise shipped.

Improves accuracy of specifications, reduces errors, provides
specifications that can be analyzed and simulated.

Design iteration becomes much faster. And, as a design grows, our
techniques scale – proofs can processed in parallel.

Also used for post-silicon debug, fast simulation, and
reverse-engineering.

Result: accurate specs, proof-based validation, faster design cycles,

Saves financial and human capital, reduces re-work, yields better products.

October 8, 2019 22 / 26

The Size of Future Models and Proofs

The Size of The Future

New x86 contains I/O and memory interface – size of everything is much
bigger!
Remember: we are dealing with very large models; this is different that
checking 1000s (or billions) of simple (SAT-checked) properties.

Multiple name spaces, e.g., Verilog Classes (ACL2 packages)

Spec: now 1.5M LoC; future; 20M+ LoC with I/O, network, etc.

Proofs: now some proofs 40+ GB RAM, require 150+ CPU hours;
future: 100s GBs RAM, 1000s of CPU hours

Memory compression is critical for spec and proofs (see next slide)!

Automation++: purpose-built proof procedures (clause processors)

Hundreds of changes/improvements to improve ACL2’s capacity!

Tool capacity can’t be overstated; once x86 design translated into ACL2
representation and stored, it can be read (by many machines) in seconds.

October 8, 2019 23 / 26

Model Representation

Model Representation

It is critical to keep the model compact and up-down accessible.

The VIA x86 model is 1.5M LoC; ∼60 MBytes. Processing requires 9
minutes.

Once processed, model is expanded (elaborated) and annotated.

Every ACL2 expression is unique – no duplicates anywhere!

With compression, entire model can be read off disk in seconds.

Upward map created (more later); this allows netlist to up/down
navigated.

Unique representation of all netlist data speeds comparisons greatly.

Model can be regurgitated in a simplified form; used for IP study.

The compressed model is a starting point for interfacing to many other
tools.

October 8, 2019 24 / 26

Model Is Like a DataBase

Model Is Like a Up-Down DataBase

A B E F GC D A B C D E F G A B C D E F G A B C D E F G A B C D E F G

Netlist-Level Representation Internal size ∼3/5; much smaller (<10%) for a big model.
(((A B) C) ((D E) (F G))) ((\#1=((A B) C) \#3=(\#2=(D E) \#4=(F G)))

(((A B) C) ((D E) F G)) (\#1\#(\#2\# F G))

(((A B) C) (D (E (F G)))) (\#1\#(D (E \#4\#)))

((A (B C)) ((D E F) G)) (\#5=(A (B C)) ((D E F) G))

((A (B C)) ((D E) (F G))) (\#5\#\#3\#))

Can navigate model in up-down manner. Association list is the up map!
((A B) ((A B) C))
((((A B) C) ((D E) (F G))) . 1)
((D E) ((D E) F G)

((D E) (F G)))
(((D E) F G) ((A B) C) ((D E) F G))
((((A B) C) ((D E) F G)) . 1)
(((A B) C) (((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G))
(((A B) C) ((D E) (F G))))

((F G) (E (F G))
((D E) (F G)))

((E (F G)) (D (E (F G))))

((D (E (F G))) (((A B) C) (D (E (F G)))))
((((A B) C) (D (E (F G)))) . 1)
((B C) (A (B C)))
((D E F) ((D E F) G))
(((D E F) G) ((A (B C)) ((D E F) G)))
(((A (B C)) ((D E F) G)) . 1)
((A (B C)) ((A (B C)) ((D E) (F G)))

((A (B C)) ((D E F) G)))
(((D E) (F G)) ((A (B C)) ((D E) (F G)))

(((A B) C) ((D E) (F G))))
(((A (B C)) ((D E) (F G))) . 1)

October 8, 2019 25 / 26

The Character of the Future

The Future

We believe these techniques are the engineering tools of the future.

Our approach is more much more thorough than simulation and
requires far fewer computational resources.

Ability to combine HW and SW models, including environments

Tools inspired by our approach are now being used to help assure the
validity of financial trading

Key issue: tool flexibility. CAD Vendors have greatly slowed progress.
No one owns their software – it’s nearly all leased!

Formal specification and proof of IP is possible; need a way monetize
and share, including the formal specs, designs, and the proofs.

Simply said, mathematical approach is more precise, faster, assures
better products, and is less costly than provided by the existing
practice.

Mechanized mathematics is the only approach that can scale to future
system specification and verification requirements.

October 8, 2019 26 / 26

	What is Hardware Verification?
	Super Simple Adder Verification
	Is Machine-Checked Formal Verification Even Possible?
	FV Can Work: The FM9001 Microprocessor, circa 1990
	ARM, PowerPC, x86, and many others
	Contemporary Example
	Post-Silicon Debug
	Contemporary Hardware Features
	The Model Size of a Contemporary x86 Design
	What is the Specification?
	

	So What?
	The Size of Future Models and Proofs
	Model Representation
	Model Is Like a DataBase
	The Character of the Future

