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Motivation
Autonomous Proximity Operations 

(ProxOps) in Space

NASA and USAF have identified proximity
robotics operations such as autonomous
rendezvous and docking as crucial
technologies.

 Autonomous Rendezvous & Docking

 Space Station Resupply / Structural Integrity 
Inspection

Results

The problem is formulated in the context of continuous
time stochastic optimal control.

Experimental Validation
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Sensors
 4 VSCMGs, 12 Cold Gas Thrusters
 IMU, 3 axis Rate Gyro, 3 axis Magnetometer
 CCD and 3D Range Camera
 VICON motion capture system
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5DOF simulator for ARD Control Room

Trajectory optimization using Stochastic Optimal
Feedback Control
 Stochastic Differential Dynamic Programming (DDP).
 Probabilistic inference using Sparse Spectrum

Gaussian Process regression for uncertainty
representation and real time probabilistic inference.

Information Theoretic Relative Navigation and
Guidance in Orbit
 Exploit the structure of ProxOps (orbit constraint, Lie

manifold) and apply information theoretic algorithms
to this problem.

Vision-Based Relative Navigation in Orbit
 Investigate SLAM solutions for RelNav problem in

orbit
 ORB-SLAM based on BRIEF binary descriptor ->

More efficient than SIFT
 Automates loop closure with BoW pose recognition
 Applied to NASA STS-125, Hubble Space Telescope

(HST) Servicing Mission
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Approach Outline

 Takes into account explicit model uncertainties 
using Sparse Spectrum Gaussian processes (GPs).

 Trajectory optimization in belief spaces.
 No a-priori control policy parameterization.
 Scales to high-dimensional control problems.
 Computational efficiency for real time inference.

Probabilistic Trajectory Optimization using Sparse 
Spectrum Gaussian Processes

Local approximation of the belief dynamics

Spacecraft Robotic Manipulator Analysis and 
Control using Dual Quaternions

Provide unified framework enabling kinematic and 
dynamic analysis of robotic manipulators on rigid 
bodies using dual quaternions (DQs).
Dual quaternions capture the combined rotational 
and translational motion. 

.

Comparison w.r.t Uncertainty Propagation and Computational Efficiency

Relative circumnavigation of target satellite
Goal: maximize time allocated to landmark 

observation
Three cost functions
Time under observation (TUO)
Trace of covariance matrix (TCM)
TUO and no. of different landmarks observed

 By jointly considering the planning, control and 
estimation it is possible to balance control actuation 
costs and localization uncertainty
Extension to 3D case using C-W relative orbit 

equations

Landmark potential map

Trajectory optimization using parameterized 
control policies

Ongoing and future work
 Ongoing: Performing experiments with Probabilistic 

Trajectory Optimization using GP in Belief Space.
 Future: Performing experiments using either sparse 

GPs or semi-parametric representations.

Control Approach: DDP

DQ Kinematics: 

DQ Dynamics: Based on DQ form of Newton-Euler 
equations

Results
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