Information Disclosure and Security Policy Design: A Large-Scale Randomization Experiment in Pan-Asia

Yun-Sik Choi¹, Yunhui Zhuang², Shu He³, Gene Moo Lee⁴, Chung Man Alvin Leung², and Andrew B. Whinston⁵

¹AITRICS; ²College of Business, City University of Hong Kong; ³School of Business, University of Connecticut; ⁴Sauder School of Business, University of British Columbia; ⁵McCombs School of Business, The University of Texas at Austin

Abstract

This paper investigates how the disclosure of a security vulnerability index based on outgoing spams and phishing website hosting, which may serve as an indicator of a firm's inadequate security controls, affects companies' security protection strategy. Our core objective is to study whether firms improve their security when they become aware of their vulnerabilities and such information is publicized. To achieve this goal, we conduct a randomized field experiment on 1,262 firms in six Pan-Asian countries and regions. For the treatment group of 631 firms, we alert them of their security vulnerability index and ranking over time, and their relative performance compared to their peers via emails and a public advisory website. Compared with the control group without being informed of their security vulnerability index, the treatment group improved their security over time, with a significant reduction of outgoing spam volume. A marginally significant improvement in reducing phishing hosting websites is also observed among non-web hosting firms in the treatment group. The security improvement may be attributed to firms' proactive reaction to the security vulnerability information. Our study provides cybersecurity policy makers with useful insights on how to motivate firms to adopt better security measures.

Research Question

- · Information Disclosure Policy
- Evaluate organizations' security level by monitoring Outgoing Attack
 Activity in Asia.
 - Indicator of compromised computer / network
- · Comprehensive security measure
 - Help customers and investors evaluate potential information security risks of the organizations of interests
 - Encourage firms to recognize the problem and react
- Will information security awareness lead to an increase defense level against cybercrime?

- CBL Composite Blocking List
 IP, owner, Botnet
 PSBL Passive Spam Block List
 IP, contents, volume, ASN
 Phishing (websites)
 APWG Anti Phishing Working Group
 Biggest phishing database.
 - OpenPhish
 - Automated phishing detection.
 OpenPhish

a a a a a b a a a a a a a a a a a a a
and and and and and and and and and and

Security Advisory | 資訊安全建議 | 信息安全建议

This advisory indicates the level of potential spam emails and phishing websites using IP addresses owned by Henan Union Technology Co Ltd, compared to other organizations in Pan-Aaia. This information may be useful in determining information security improvements.

運行器管理供由Henan Telcom Union Technology Co LId形推荐的萨地址中有關位能型件和的金牌站起意。以及更機構在資訊完全 方面即定型用地關其管機構動性的用。這些改是或不能助量機構了解自身在資訊的全型構成。 这份指導環境由Henan Telcom Union Technology Co LId形用有的产品址中再定应最形形的雪梯间的。 又是可见空油地压制和时的过去形。这些信息或和符号并如了解集合在是要太方面的含量得近。

Composite Bords ranking for Henan Telcom Union Technology Co Ltd in May 2017 Henan Telcom Union Technology Co Ltd 使May 2017的设备发展的影响名: Henan Telcom Union Technology Co Ltd 使May 2017的现金发展的影响名:

Borda Rank Among HSIC Code Description

 09
 1262
 631100
 Data processing, hosting and related activities

 In Partial states in least on fear different data extension. Makes Decide states and emblors indicated activities
 Second states and emblors indicated activities

mer runerabilities. For graphics and more information about spann volume and phishing attes originating from your ization, piesae visit our <u>Organizational Applicies</u> page. Note that the information provided on this security advisory is cly searchable on the cybeRatings website.

金会通道通常混合百個不同的製造項描示合計算得出。数率的透過通常使名贵的最考虑可能有要直的会主要用。如果達取以上贵格的容易重要。或了解更多有更是機構起的比較的非常考到為原因的負担。時於常我們的<u>機構的的</u>異現合語。更加書類的用戶類就 供的資源對於有該例ybeRatings解說的用戶類就。

<u>但会说让调款</u>集由否个不同的就情况经济合计算得出,就有的<u>说让调款</u>都名表被责机时可能有严重的安全演用。如果把取以上表待 的距离重要,或了解更多有如此责化或法的方式提供完成的量素,请刘问我们的<u>发生分钟</u> 页面,<mark>讲建集,非常在中期</mark>優 我的意思方所的**的(systeming State)**用产开起。

Randomized Field Experiment

Empirical Model

DID model

- Random treatment
- Monthly data in 2017

Org and time fixed effects

Regressions

 $y_{it} = \alpha_0 + \alpha_1 * emailtreat_{it} + \theta_i + \sigma_t + \epsilon_{it},$

Variable	Variable description	Mean	S.D.	Max	Min
CV	CBL Volume	151661.8	2269080	1.00e8	0
PV	PSBL Volume	147.9001	2698.253	157765	0
AV	APWG Volume	0.2372	6.1761	456	0
OV	OpenPhish Volume	0.3249	3.1254	105	0
Number of IP addresses	Total number of IP addresses owned by each company	610223.4	7273093	2.33e8	0
If has social media account	If the company has at least one social media account	0.7035	0.4569	1	0
HSIC	Hong Kong Standard Industrial Classification Code			960299	50000
If has opened treatment emails	If an organization has opened a treatment email on or before this month	0.2062	0.4048	1	0
If has visited treatment website	If an organization has visited our website on or before this month	0.07080	0.2566	1	0

Table 1: Summary statistics

Results

	ln(CV)	ln(PV)	ln(AV)	ln(OV)
	(1)	(2)	(3)	(4)
email_treat	-0.135**	-0.000842	0.00974	-0.00766
	(0.0682)	(0.0338)	(0.0114)	(0.0121)
Organization fixed effects	yes	yes	yes	yes
Month fixed effects	yes	yes	yes	yes
Constant	1.893***	0.287***	0.0417***	0.0779***
	(0.0341)	(0.0166)	(0.00522)	(0.00698)
Number of observations	13,560	13,560	13,560	13,560
Number of organizations	1,130	1,130	1,130	1,130
R-squared	0.014	0.053	0.012	0.004

Table 2: Treatment effects on different security measures

	Sample of positive spam volume		Sample with phishing websites		
	ln(CV)	ln(PV)	ln(AV)	ln(OV)	
	(1)	(2)	(3)	(4)	
email_treat	-0.430***	-0.128*	0.178*	-0.138	
	(0.138)	(0.0708)	(0.107)	(0.120)	
Organization fixed effects	yes	yes	yes	yes	
Month fixed effects	yes	yes	yes	yes	
Constant	3.255***	0.538***	0.335***	0.697***	
	(0.0700)	(0.0340)	(0.0471)	(0.0697)	
Observations	5,544	5,544	1,200	1,200	
Number of organizations	<mark>4</mark> 62	462	100	100	
R-squared	0.033	0.091	0.109	0.038	

Table 3: Analysison subset firms with positive security measures before the experiment

	Full sample		Sample w/ security incider	
	Country rank	Industry rank	Country rank	Industry rank
	(1)	(2)	(3)	(4)
email_treat	0.563**	0.177	1.304**	0.447
	(0.276)	(0.231)	(0.532)	(0.459)
Organization fixed effects	yes	yes	yes	yes
Month fixed effects	yes	yes	yes	yes
Constant	35.44***	22.59***	33.74***	22.68***
	(0.181)	(0.144)	(0.313)	(0.255)
Observations	13,560	13,560	5,472	5,472
Number of organizations	0.261	0.135	0.153	0.071
R-squared	1,130	1,130	456	456

Table 4: Treatment effects on organizations' security rankings

- · Hosting and Non-hosting Firms' Phishing Websites
 - Externality issue
 - Web hosting firms might not have a strong incentive to take down phishing websites
 - Divide 124 organizations with positive phishing data into two groups
 - Find marginal significant phishing reduction for nonhosting organizations

Conclusion and Future Direction

- To summarize, our results from the empirical analysis suggest that information security monitoring websites, such as cybeRatings, can be effective in reducing botnet activities represented by outgoing spam volume.
- Meanwhile, we observed that firms have different incentives in terms of managing phishing attacks.
- This work may have policy implications in that stronger regulations may be required to internalize the negative externalities resulting from phishing websites hosted by malicious entities.
- · Future direction:
 - Machine learning models to show the relationship between spam/phishing information and the probability of a data breach
 - Combining randomized field experiment with machine learning models

Acknowledgement

 Supported by US National Science Foundation (NSF Award Number: 1718360, NSF Student Travel Grant) and the Public Policy Research Funding Scheme (Project Number: 2015.A1.030.16A) from the Policy Innovation and Coordination Office of the Hong Kong Special Administrative Region Government.