

Information Flow Analysis for Cyber-Physical Security

- Bruno Sinopoli, Washington University in St Louis
- Soummya Kar, Anupam Datta, Carnegie Mellon University
- <u>bsinopoli@wustl.edu</u>, <u>soummyak@cmu.edu</u>, danupam@cmu.edu
- Award #: 1646526

Description

CPS Researchers Face the Challenge of

1) Achieving Resilience in the Face of Threats

Our Approach

1) A Process of Accountability involving Detection, Identification, and Correction

2) Information Flow as a Unifying Language/Set of Tools (Today's Focus)

An Information flow exists from x to y if information in x is transferred to, or used to derive information transferred to y

Ex. We propose the **KL divergence** between normal and attack distributions as a measure of information flow to characterize attack detectability

2) Obtaining a Unifying Framework to Solve Problems

Findings: A methodology for analysis/design

Goal: Be able to detect new attack vector by designing IF > ϵ . From prior results, this guarantees the existence of a detector with FA decay rate > ϵ .

1)	Attacker Policy	Current Defender Policy	Defender Degrees of Freedom	Categorize Information Flow
2)	Type of Information Flow	Detectability of Attack	Illustrated Example	Action Required
	Unconditional ε - weak information flow	Attack is stealthy for all admissible defender policies: IF ≤ ε	Zero Dynamics Attacks FDI Attacks	Nothing can be done without increasing the available DOF for the defender
	Conditional ε - weak information flow	Attack is stealthy for some defender policies (including current): IF ≤ ε	Replay Attacks	Change Policy: Balance Information Flow and System Performance
	ε – strong information flow	Attack is detectable for current defender policy: IF > ε	Watermarking Defense against Replay Attacks	None

3) If necessary, increase degrees of freedom and/or change the defender policy. Ensure prior attack vectors generate sufficient Information Flow