CPS: Collaborative Medium: Infrastructure and Technology Innovations for Medical Device Coordination (NSF CNS-0932289/0930647)

Components are composed to

form coordination apps

2012 CPS PRINCIPAL INVESTIGATOR MEETING, National Harbor, MD Lead PI: John Hatcliff (KSU - hatcliff@ksu.edu), PI: Insup Lee (U Penn)

Unleveraged Device Connectivity

- Delivering modern medical care involves complex cyber-physical systems...
- many medical devices, electronic medical records clinicians/care-givers ...all working together to achieve a goal
- Although most modern medical devices have some form of connectivity, they are not integrated so that they can work together as a
- devices are "unaware of their context", e.g., details of patient parameters, history, current procedures they may impact/distort readings
- data from multiple devices is not combined to produce more meaningful information to clinicians
- actions of multiple devices cannot be automatically coordinated to achieve greater safety and efficiency

What Could be Achieved if Devices formed a System of Systems (SoS)?

admission control

Middleware for Device SoS Integration

The Medical Device Coordination Framework (MDCF)

- Our project is developing an open source Medical Device Coordination Framework – a platform for integrating medical devices into systems
- The MDCF provides...
- Publish-subscribe middleware for integrating devices
- A component-based application (app) environment for developing and running algorithms that coordinate the device data flows and actions
- Together the platform, app, and connected devices form a Virtual Medical Device – a composite system device composed of individual devices

Real-time support for VMD Apps

- Hard real-time communication infrastructure Light-weight
- Pub/sub programming model Support for programming clinical-algorithms with realtime constraints
- Event driven Time triggered
- Admission control
- Guarantee performance specified by VMD App or prevent clinician from instantiating VMD

Research Issues **MDCF Platform VMD** App Validation & Verification Verification Device connection protocols Device configuration protocols VMD setup/teardown algorithm Verify that platform: Correctly implements Correctly implements

The MDCF conforms to the ASTM standard for an Interoperable Clinical Environment (ICE) developed by the CIMIT MDPnP project.

Component-based Development for Coordination Apps

Reconfigurable Families of Medical Devices

Smart Alarms and Decision Support

Definition

- MCPS of multiple devices and central "smart" controller
- Filter, combine, process, and present real-time
- medical information Suppress irrelevant alarms
- Provide summaries of the patient's state and
- predictions of future trends

Benefits

Improve patient safety More accurate than current alarms

caretaker fatigue

- Provide pertinent contextual information
- Reduces clinician workload Reducing high number of false alarms, which reduces
- Eliminates need for periodic hand-recording of data

PCA device coordination

Conference October 2009

demo at Cerner Health

 Facilitates practice of evidence-based medicine

Preprocessing Output Heart Rate → HR Classifier Alarm Blood Pressure Generator RR Classifier ➤ SpO₂ Classifier EHR/Labs Database (Context Information

Challenges

- Filtering and combining data streams from multiple devices
- Developing context-aware patient models
- Encoding hospital guidelines, extracting experts' models, learning models statistically
- Presenting data concisely and effectively

Approach

- Generic Smart Alarm Architecture
- Modular: flexible and configurable Preprocessing, inference, visualization

Case Studies

Smart alarm for CABG patients

 Post-CABG surgery patients produce many false alarms Simple classification with nurse-generated rules: 57% reduction in false alarms

Seizure smart alarm

 Brain tissue oxygen alarm threshold unsubstantiated in regards to seizure Investigating multiple vital sign alarm to detect seizure

 Vasospasm smart alarm Post-SAH surgery patients at risk for vasospasm

 Clinical suspicion factors for vasospasm are subtle, definitive measure is invasive Working to analyze multiple vital signs to produce risk assessment for

Future Work

- Expand number of vital signs considered
- Simplify design to ease workflow integration
- Understand and establish safety in these systems

Regulatory Policy

We are actively engaged with FDA engineers to develop science-based inputs for forming regulatory policy for interoperable medical systems

- Safety evaluation eco-system for medical device interoperability platforms
- Example hazard analyses, mock 510(k) regulatory submissions for apps and other MDCF components
- Guidelines for development of third-party certification regime

Educational Material

The MDCF is open source and is designed to support a variety of interesting class projects and graduate research projects

- A collection of mock (software simulated) medical devices including blood pressure monitor, pulse oximeter, infusion pump, electrocardiogram (ECG)
- A collection of example apps illustrating how to use the MDCF app development environment
- Illustrations of how to interface with real medical devices
- Suggested student projects

MDCF enables what we call "medical platform-oriented devices" (MPODs) "headless" devices with very small form factors consisting primarily of "raw" sensors and actuators — the device UI and primary computation are implemented via apps on the MDCF platform.

oximeter, the photoplethysmograms (PPGs)

acquired by the pulse oximeter's light-based

sensor offer other clinical parameters (at right)

A tiny platform-based reflectance pulse oximeter

can be extracted from PPGs • Systolic, diastolic, blood pressure (BP)

Additional clinical parameters that

- Stroke volume (SV) Cardiac output (CO) • Respiration rate (RR)
- Peak-to-peak time (PPT) Pulse wave velocity (PWV) developed at KSU EECE Device Component Lab
 - Arterial elasticity (AE)
 - Stiffness index (SI)
- Although only two physiological parameters, HR Reflection index (RI) and SpO₂, are reported by a conventional pulse
 - Perfusion index (PI) Patient activity/motion
 - Patient identity Ambient light information

MDCF apps allow the allows the sensors of the pulse ox MPOD to be rapidly reconfigured into different medical devices

Example 1: App to extract HR, SpO₂, and RR with moving averages, display smoothed waveforms

Example 2: App using two MPOD POs

final PWV value, e.g., after applying a moving average filter.

Example 3: App uses feedback from feature (noise, ambient light) detection to attach viability ranking to components producing physiological parameters BP and SV.

Team

Kansas State University Yu Jin Kim

John Hatcliff Dan Andresen Robby Steve Warren

Eugene Vasserman

Kejia Li Sam Procter Carlos Salazar Jayson Sharp

Oleg Sokolsky Andrew King

University of Pennsylvania

Insup Lee

Collaborators

Center for Integration of Medicine and Innovative Technology (CIMIT)

Julian Goldman David Arney

Food and Drug Administration Paul L. Jones Sandy Weininger

William Spees

J Penn Ph.D. student Andrew King explains demo scenario to Paul Jones from FDA

Industry Collaboration