# FREEDAN SYSTEMS CENTER

Infusing Autonomy and Resilience in Power Distribution Systems with Smart Transformers

Aranya Chakrabortty

North Carolina State University NSF CPS PI Meeting, 2019





### **Power Distribution Systems with** Smart Transformers



#### Today, individual customers 38 Distribution Transformer DC DC BREAKER DC/ AC BATTER /DC METER AC BUS BREAKER DC AC DC/ AC BATTER Ъс METER



#### In 5 more years, shared autonomy





### Modeling of Distribution Grids





- SSTs are connected in single phases of a 7.2 KV (3 PH, L-N) distribution feeder.
- Each SST is rated for 20 KVA
- 400 V DC and 120 V AC



State-variable models per microgrid:

- $\checkmark$  More than 70 state variables from physical dynamics of the components
- $\checkmark~23$  state variables arising from the internal PI controllers.
- $\checkmark$  17 excitation input, 4 set-points and 6 switching parameters.





Conventional synchronous generators:

 $M\ddot{\delta} = P_m - r\sin\delta$ 

- Two equilibria, one stable, one unstable AGC ensures stable equilibrium despite load changes
- In distribution grids there is no AGC! Feasible Operating Curve **Rectifier steady-state equations** Circle Diagram of system Constraints  $\left(x_1 + \frac{y_1}{2a_2}\right)^2 + \left(x_2 + \frac{y_2}{2a_2}\right)^2 = \frac{y_1^2 + y_2^2}{4a_2^2} - \frac{2P_{\text{rec}}}{a_2}$ 50 Duty cycle constraints of the rectifier  $\left(x_{1} + \frac{a_{2}y_{1} + a_{1}y_{2}w_{1}}{a_{2}^{2} + a_{1}^{2}w_{1}^{2}}\right)^{2} + \left(x_{2} + \frac{a_{2}y_{2} - a_{1}y_{1}w_{1}}{a_{2}^{2} + a_{1}^{2}w_{1}^{2}}\right)^{2} \le \frac{r_{1}^{2}}{a_{2}^{2} + a_{1}^{2}w_{1}^{2}}$ -150 -100-50 0 50 100 Careful choice of system parameters & setpoints lacksquared-axis current,x, Careful choice of loads (electric vehicles) Infinite feasible equilibria, which one is optimal?
- What if transmission grid is not an infinite source of current?

### FREE Resilience via Control of Storage



Load (including electric vehicles) Forecasting



### SYSTEMS CENTER

**Control of Storage** 







**Control of Storage** 





Much more accurate short-term load forecasting (including electric vehicles) is needed!

Load demands depend on various factors:

- Number of customers
- Number of electric vehicles
- Residential, industrial, banks, malls, hospitals, data centers
- Weather
- Social factors, income levels
- Demand response

Reinforcement learning is being studied as a potential tool for DR-advisor (Behl & Mangharam, 2016)

### **Control of Storage**





**SST** 
$$\dot{x_i} = f_i(x_i, \zeta_i, x_j, \alpha_i)$$
  
**Storage**  $\dot{\zeta_i} = g_i(x_i, \zeta_i, u_i)$ 

Can be an interesting application of Backstepping control, Adaptive backstepping

**Control of Storage** 





Proximity effect: Whether load changes or a new SST is added, setpoints of neighboring SSTs are going to see maximum change

### **Cyber-Physical Architecture**





Three Different Communication Topologies

### Coastal Microgrid Community







- Ocracoke Island Microgrid 250 miles from Raleigh, in the outer banks of NC
- 1000 residents
  - Took two weeks for full power restoration after Hurricane Sandy (currently closed after Dorian)
  - We are working with NC Electricity Cooperative on medium-voltage SSTs, future plans at Ocracoke



13

- Control of networked microgrids with SSTs respecting coupling with transportation infrastructure
- Transient Stability
- Power sharing methods in multi-SST system
- Cyber-Physical architecture for control (Use of 5G networks, SDN)
- Plug-and-play operation via retrofitting
- Storage optimization, control, and placement
- > Machine learning methods for DR & forecasting of vehicle loads
- Cost-Benefit Analysis and Economics of SSTs

#### Reference:

A. Milani, M. Khan, A. Chakrabortty, and I. Husain, "Equilibrium Point Analysis & Power Sharing Methods in Distribution Systems Driven by Solid-State Transformers," *IEEE Transactions on Power Systems*, 2018.





### Thank You

### Email: achakra2@ncsu.edu

Homepage: http://people.engr.ncsu.edu/achakra2