2021 NSF CYBER-PHYSICAL SYSTEMS PRINCIPAL INVESTIGATORS' MEETING PS: Small: Inkjet Printed Flexible Electronic CPS with **Context-aware Events of Interest Detection**

PI: Bashir I. Morshed¹, Co-PIs: Tomoko Fujiwara², Frank Andrasik³, Robert Hewitt⁴, Rajesh Kabra⁵, Consultant: Mamunur Rahman⁶, Students: Mst M. R. Momota¹, Tamanna Ferdous², Mahfuzur Rahman¹, Md S. B. Zaman⁷, and Md J. Rahman⁷

•1Computer Science Department, Texas Tech University (TTU); ²Chemistry Department of Psychology, UM; ⁴Engineering Technology Department, UM; ⁵Cardiology, University of Tennessee Health Science Center (UTHSC); ⁶Emergency Department, Baptist Minor Medical Center; ⁷Electrical and Computer Engineering Department, UM

CPS Challenges:

- How to utilize resilient and reliable cyber-physical interfacing, while being economically viable
- How to process large data automatically and reliably for realtime event monitoring at smart edge devices
- How to seamlessly integrate computation and physical domains along with meaningful interpretation of multimodal and multigrain data of scalable CPS

Proposed solutions:

- 1) To create foundational engineering process for CPS interface with thinfilm flexible electronics with inkjet printing
- 2) To develop new algorithms for autonomous processing of sensor data to detect context-aware events of interest and data reliability metric
- 3) To deploy CPS practice components for a real-life pilot study to explore detection of cardiac episodes

Award ID#: CNS-1932281

Broader Impact:

- processing

HE UNIVERSITY OF

Project Duration: 2020 - 2022

Scientific Impact:

• Flexible IJP thin-film multilayer sensors for CPS interfaces. • Real-time algorithm for **D**ata **Reliability Metric (DReM)** computed from the statistics of streaming data itself.

 Context aware episode detection with machine learning.

 Impacts will extend beyond wearables and medical devices to a host of systems that involve closed-loop feedbacks with sensors and automated data

• Developing ten 2-hr

- synchronous-asynchronous
- modules for a planned 2-week-
- long Online Summer Code Camp