Integrated Modeling and Learning for Robust Grasping and **Dexterous Manipulation with Adaptive Hands** RUTGERS Avishai Sintov, Andrew Kimmel, Andrew Morgan, Liam Schramm Pls: Aaron Dollar, Kostas E. Bekris and Abdeslam Boularias OF NEW JERSEY

Yale OpenHand Project

https://www.eng.yale.edu/grablab/openhand/

Why Underactuated Adaptive Hands?

- Able to passively adapt to objects of uncertain size and shape.
- Provide good grasping performance without sensing and with open-loop control.
- Enable a low cost and compact design.

However, under-actuated hands

- are difficult to model analytically and to control,
- and have a high uncertainty due to the use of

100

-25

-75 -50

ò

50

25

75

Path Tracking Experiments

Robust Belief-Space Planning Using Learned Transition Model

Planning tree constructed using the transition function given by a neural network

Planning Experiments

	STANDARD	MEAN-ONLY	ROBUST
Initial Solution Time [s]	15.6	550.6	615.9
nitial Solution Path Length [mm]	51.28	55.98	67.01
Final Solution Path Length [mm]	49.73	50.12	65.42
Planning Solved Rate	83.3	58.3	91.7
Reached Goal Success Rate	0.04	0.25	.62
Validity Rate	0.06	.78	.73

Motion Planning with Competency-Aware **Transition Models**

A second neural network, called the *critic network,* is trained to predict where the transition neural network makes more mistakes.

Heatmap illustrations of the critic values projected on the x-y plane with regards to different action directions.

Motion Planning with Obstacle **Avoidance Experiments**

	-		-		e		•		5		
	STA.	H-CRITIC	STA.	H-CRITIC	STA.	H-CRITIC	STA.	H-CRITIC	STA.	H-CRITIC	
1)	111	87.42	206	91.33	169	175	97.5	93.3	83	64.9	
(%)	0	20	50	80	0	100	0	90	100	100	
	NA	2.27	3.61	2.16	NA	5.06	NA	2.57	1.45	1.21	
Sec $t = 54.99$ sec $t = 79.99$ sec $t = 79.99$ sec $t = 134.99$ sec $t = 180$ sec $t = 197.99$ sec											
t = 0	D sec	t = 37	2.99 sec	t = 74.9	99 sec		t = 0 sec		= 80 sec		

- ISRR 2019. Kostas Bekris, Abdeslam Boularias. "*Learning a State Transition*

Learning to Transfer Dynamic Models of Underactuated Soft Robotic Hands

stead of learning a new model for every new hand om scratch (12 more hours of data collection), we only a small number of new trajectories and Irn to transfer the original transition model.

Errors of predicted future states accumulate over time. The proposed *cumulative residuals* approach solves this issue by bounding the *Lyapunov* exponent of the transferred mode.

Publications

Model of an Underactuated Adaptive Hand". In ICRA-RAL 2019.

• Liam Schramm, Avishai Sintov and Abdeslam Boularias. "*Learning* to Transfer Dynamic Models of Underactuated Soft Robotic *Hands*". In ICRA 2020.

• Avishai Sintov, Andrew Kimmel, Kostas E. Bekris and Abdeslam Boularias. "Motion Planning with Competency-Aware Transition Models for Underactuated Adaptive Hands". In ICRA 2020. • Andrew Kimmel, Avishai Sintov, Juntao Tan, Bowen Wen, Abdeslam Boularias and Kostas E. Bekris. "*Belief-Space Planning using* Learned Models with Application to Underactuated Hands". In • Avishai Sintov, Andrew Morgan, Andrew Kimmel, Aaron Dollar,