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Learning to Transfer Dynamic Models

STANDARD [MEAN-ONLY [ROBUST )
| Initial Solution Time [5] 156 | 5506 | 6159 of Underactuated Soft Robotic Hands
hitps://www.eng.yale.edu/grablab/openhand/ Initial Solution Path Length [mm]| 51.28 55.98 67.01
Final Solution Path Length [mm] | 49.73 50.12 | 65.42 Instead of learning a new model for every new hand
Planning Solved Rate 83.3 58.3 91.7 from scratch (12 more hours of data collection), we
Reached Goal Success Rate 0.04 0.25 .62 record only a small number of new trajectories and
Validity Rate 0.06 18 13 learn to transfer the original transition model.

Motion Planning with Competency-Aware
Transition Models

A second neural network, called the critic network, is
trained to predict where the transition neural network
makes more mistakes.
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Wh; Underactuated Adaptive Hands?

* Able to passively adapt to objects of uncertain size
and shape.

* Provide good grasping performance without sensing
and with open-loop control.

« Enable a low cost and compact design.
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Robust Belief-Space Planning
Using Learned Transition Model
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The Critic’s cost-map reveals that the neural net
tends to make more errors in certain segments.

A safer path is selected by preferring branches
where the neural net tends to be more accurate.
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¢ Transfer Residuals

mmmmsm Cumulative Residuals

Errors of predicted future states accumulate over time. The
proposed cumulative residuals approach solves this issue
by bounding the Lyapunov exponent of the transferred mode.
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However, under-actuated hands

 are difficult to model analytically and to control,
* and have a high uncertainty due to the use of

Planning tree constructed using the transition function
given by a neural network
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the x—y plane with regards to different action directions.

Motion Planning with Obstacle

Avoidance Experiments « Liam Schramm, Avishai Sintov and Abdeslam Boularias. "Learning
[ Goul | 1 | 2 I : | L | 2 I to Transfer Dynamic Models of Underactuated Soft Robotic
STA. H-CRITIC STA. H-CRITIC STA. H-CRITIC STA. H-CRITIC STA. H-CRITIC
path length (mm) 11T 87.42 206 9133 169 175 97.5 933 83 64.9 Hands'". In ICRA 2020.
rollout suc. rate (%) 0 20 50 80 0 100 0 90 100 100 . . . . .
RMSE (mm) NA | 227 [ 361 216 [ NA | 506 | NA | 257 [ 145 1o * Avishai Sintov, Andrew Kimmel, Kostas E. Bekris and Abdeslam

Boularias. "Motion Planning with Competency-Aware Transition
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Learned Models with Application to Underactuated Hands”. In
ISRR 2019.
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The same data is used to train an SVM to
predict states with high failure (overloading, or

MEAN-ONLY

Failure Success

dropping the object) probabilities.
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