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Why Underactuated Adaptive Hands?
• Able to passively adapt to objects of uncertain size 

and shape.
• Provide good grasping performance without sensing 

and with open-loop control.
• Enable a low cost and compact design.

However, under-actuated hands
• are difficult to model analytically and to control,
• and have a high uncertainty due to the use of 

soft materials and low-cost manufacturing.

Learning a State Transition Model

Data Collection Gaussian Process 
Regression on a 

Manifold 

The same data is used to train an SVM to 
predict states with high failure (overloading,  or 
dropping the object) probabilities.

Path Tracking Experiments

Eu
cl

id
ea

n 
G

P
M

an
ifo

ld
 G

P

Goal

Start 
State

Robust Belief-Space Planning
Using Learned Transition Model

Planning tree constructed using the transition function 
given by a neural network
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Algorithm 1: PP (Bt ,ut)

1 Initialize empty set Bt+1;
2 Init Mf  0;
3 foreach xi

t 2 Bt do
4 if random([0,1])> ps(xi

t ,ui
t) then

5 Remove xi
t from Bt ;

6 Mf  Mf +1;
7 end
8 end
9 pvalid(bt+1) 

⇣
1� Mf

|Bt |

⌘
;

10 Sample Mf points from Bt and add to Bt ; // Duplicates valid particles to keep

|Bt | consistent

11 Bt+1 G (Bt ,ut);
12 return Bt+1, pvalid(bt+1);

Fig. 2 The uncertainty of the system is captured using a particle distribution over the system’s
state. Using the black-box propagation model, each particle is propagated to obtain the next state’s
distribution (left). In order for the new node to be added to the tree, two robustness constraints
are checked. First, the ratio of valid particles over the total must exceed the threshold d (middle).
Validity can refer to constraints such as being collision-free, or other criteria, depending on the
system. Second, the most dense cluster of particles is computed through mean-shift, and the goal
region is transposed to this center (right). The ratio of particles that lie within this transposed region
must exceed the threshold k .
5.2 Belief-Space Planning

The objective of the planner is to a compute a sequence of controls u⇤ for a
system affected by noise, in the state and/or control space, such that the trajecto-
ries rolled out from these controls have a high likelihood of reaching the goal and
remaining valid. There are two main components necessary to perform such kin-
odynamic motion planning - state validity and state transition. Related work has
proposed using learned models built from collecting data from the adaptive hand
to generate a classification of the valid state space [4] and a state transition model
[36]. Given as input the belief of the current state bt , and the desired control to apply
ut , the transition model (4) provides the belief of the next state, while the validity
model provides the probability of being valid Pvalid(bt+1).

For deterministic planning, the probability of success can be treated in a binary
fashion (i.e. setting a strict threshold of 50%), allowing for a classification of the
invalid portion of the state space. Equipped with these tools, it is possible to apply
a standard search-tree method (e.g. an A*-like) attempting to solve this problem.
There are several issues, however, which make such a search process intractable.
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time, and also produced the longest solution paths. However, as also seen in the
prior experiments, the ROBUST solutions had the highest rates of reaching the goal
and remaining valid. Interestingly, ROBUST also had the highest planning solved rate,
which seems to indicate that the robust constraints assist the exploration of the state
space to reach the goal quicker and more efficiently.

6.2.2 Real Hand Demonstration
For a real hand demonstration, we have built an autonomous data collection system
(seen in the supplementary video) to collect a sufficient amount of data. A three-
finger Model-O underactuated hand [25], modified to use only two opposing fin-
gers, was mounted on an arm of a Motoman DA20 Dual arm robot. It manipulated
a cylinder with 45 mm diameter. To estimate the position of the cylinder during ma-
nipulation, ArUco fiducial markers [11] were attached to the hand and object such
that, during in-hand manipulation, the position of the object relative to the hand is
recorded. At each episode, the object is grasped, and manipulated with random ac-
tions while recording the state until dropped. After each drop of the object, a wire
running through the object is stretched using the second arm of the Motoman to
reposition it between the fingers toward regrasp. Approximately 400,000 transition
points were recorded in 10 Hz and used to train a GP local regressor of 100 near-
est neighbors. A peg-in-a-hole problem is demonstrated where the hand is tasked to
drop the cylinder into a 45 mm diameter hole. Planned paths from the STANDARD

and ROBUST algorithms were rolled-out and snapshots are seen in Figure 6.

Fig. 6 Demonstration of STANDARD and ROBUST plans on the three-finger Model-O underactuated
hand [25] for a peg-in-the-hole task.

7 Discussion
This paper proposes a belief-space planning framework, which utilizes data-

based models. We combined the notion of particle propagation to consider distri-
bution of states along with stochastic models that reason about uncertainty in the
data. This combination was embedded in a sampling-based motion planning algo-
rithm. We imposed constraints on the particles along the path such that the minimum
predicted probability of success is above a predefined threshold. We also included a
pruning condition, a cost-to-go heuristic and prioritized actions with better heuris-
tics, all to improve the overall performance. A varying set of experiments, including
an application for in-hand manipulation with underactuated hands, demonstrate that
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6.2.1 Physics-Engine Experiments
We first evaluate the proposed planning algorithm on physics engine simulation of
the Model T-42 adaptive hand [25] in Gazebo environment as seen in Figure 1.
The compliance of the hand was modeled as proposed in [34]. Then, approximately
2,400,000 transition points were recorded in 2.5 Hz while manipulating a cylinder
with 19.2 mm mm diameter. Using the collected data, we have trained a Rectified
Linear Unit (ReLU) BNN with two hidden layers and 200 neurons each. We also
approximated the initial distribution bo when grasping the object with a Gaussian.

We defined six goals within the workspace of the hand and positioned obstacles
in the region. For each goal, a path was planned using ROBUST, MEAN-ONLY and
STANDARD from bo to the goal region. For each planned path, 10 rollouts of the
action sequence were executed. The success rate and tracking errors are presented
in Table 3. The scenarios, planned paths and rollouts are illustrated in Figure 5.

Fig. 5 Physics engine simulation results for manipulating the underactuated hand between obsta-
cles (in gray). The black curves are the planned paths to the goal region (magenta circle). The blue
and red curves are successful and failed paths, respectively. The yellow region is the approximated
workspace of the hand. Black cells indicate that a solution was not found.
Table 3 Results for the Gazebo Adaptive Hand experiments averaged over 6 goals run twice each
(12 trials).

Gazebo Adaptive Hand Experiments
STANDARD MEAN-ONLY ROBUST

Initial Solution Time [s] 15.6 550.6 615.9
Initial Solution Path Length [mm] 51.28 55.98 67.01
Final Solution Path Length [mm] 49.73 50.12 65.42

Planning Solved Rate 83.3 58.3 91.7
Reached Goal Success Rate 0.04 0.25 .62

Validity Rate 0.06 .78 .73
Remarks: As shown in Table 3, STANDARD expectedly has the smallest computa-
tion time. Without any robustness constraints, STANDARD also produced the shortest
solution paths. However, these paths typically approached the obstacles very closely.
Consequently, as was shown in the prior experiments as well, the reached goal and
validity rates of the STANDARD solutions were very low (4% and 6% respectively).
Although MEAN-ONLY solutions improved these metrics (25% reached the goal and
78% were valid), this approach had the lowest planning solved rate with a much
higher average computation time. The ROBUST method took the longest amount of
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A second neural network, called the critic network, is 
trained to predict where the transition neural network 
makes more mistakes.

Goal
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The Critic’s cost-map reveals that the neural net 
tends to make more errors in certain segments.

A safer path is selected by preferring branches 
where the neural net tends to be more accurate.

Fig. 4. Comparison of the different algorithms for the task of manipulating a cylindrical object into a goal region (magenta circle) between a “horseshoe”
obstacle (shown in gray) using the underactuated hand in simulation. Each run consists of a planning phase followed by 10 rollouts of the planned path
(shown as a black curve). Successful rollouts that reach the goal are shown as blue curves, while failed (i.e. colliding) rollouts are shown as red curves.
The yellow region is the approximated workspace of the hand.

Fig. 5. Heatmap illustrations of the critic (for the simulated hand) error
values projected on the x�y plane with regards to different action directions.

that assists in avoiding erroneous regions of X . For the
real system, 328,483 data points were collected over 364
episodes. The experiments below use neural-networks trained
over only 40% of the data as their accuracy did not increase
beyond that, leaving the rest for the critic.

B. Critic evaluation
To generate the critic, the first step is to evaluate the

amount of data required for sufficient error prediction ac-
curacy. Figure 3 shows the accuracy of the H-CRITIC
prediction with the increase of data, out of the remaining
60% not used for training (978,735 transition points). The
accuracy does not change significantly above 40% of the
data. Figure 2b shows the actual model prediction error with
regards to the number of action changes along the past and
future path segments. This data only exists when including
past actions, as in the H-CRITIC.

As seen in Figure 1a, the reachable subset of the x � y

workspace of an underactuated hand is banana-shaped. To
get an understanding of the critic’s representation on this
space, Figure 5 provides the data in the critic as a heat-
map. This illustrates the errors of the critic projected on the
x�y plane with regards to actions that will direct the object
towards different directions. As expected, the error is lower
in the inner region of the x� y workspace where it is easier

to manipulate. On the other hand, the errors are higher on
the margins as they are harder to reach and collect motions
of diverse actions.

C. Planning Experiments

This section first evaluates a physics-engine simulation of
the adaptive hand across a variety of planning benchmarks
for in-hand manipulation. Then, a demonstration of a peg-
in-the-hole task on the real-hand is shown.

Algorithms: STANDARD uses the planning approach
based on prior work [14], which does not integrate the pro-
posed competency-aware models and optimizes a cost func-
tion based on path length. Both CRITIC and H-CRITIC
use the planning approach described in Section IV-D, and
optimize a cost function based on the critic error. H-CRITIC
utilizes a horizon (n

h

= 40) of its past actions as part of the
query to the competency model. All methods make use of
a learned state transition model and a failure classifier (both
obtained from data), as discussed in Section IV-C.

Setup: All methods were evaluated on a single Intel
Xeon E5-4650 processor with 8 GB of RAM. The planning
approaches were given the models described above and
tasked with computing a solution for reaching a goal region
within a specified time limit (1,200 seconds). Solutions that
were found within this time limit were subsequently rolled
out 10 times each, recording whether the rolled out path
reached the goal region or failed.

1) Physics-Engine Experiments: The first set of exper-
iments, shown in Fig. 4, evaluate all three methods for
a benchmark with a goal region hidden inside a set of
obstacles, in the form of a ’horseshoe’. The purpose of this is
to highlight the importance of minimizing RMSE, as in this
case, there is limited clearance for the planner to reach the
goal. The average success rates for STANDARD, CRITIC
and H-CRITIC are 17.5%, 42% and 61.2%, respectively.
The results indicate that the critic provides an advantage
for the planned paths over the traditional shortest-path cost

Fig. 6. Snapshots of the real hand experiments to manipulate the cylinder into the red horseshoe: roll-outs of (top) successful H-CRITIC planned path,
(bottom left) standard planned path that collided and (bottom right) standard planned path that reached overload of the actuators.

TABLE I
ROLLOUTS RESULTS FOR PLANS IN THE SIMULATED SYSTEM

Goal 1 2 3 4 5
STA. H-CRITIC STA. H-CRITIC STA. H-CRITIC STA. H-CRITIC STA. H-CRITIC

path length (mm) 111 87.42 206 91.33 169 175 97.5 93.3 83 64.9
rollout suc. rate (%) 0 20 50 80 0 100 0 90 100 100
RMSE (mm) NA 2.27 3.61 2.16 NA 5.06 NA 2.57 1.45 1.21

Fig. 7. Five different random goal regions (magenta circle) with random
obstacles (gray dots) used for the evaluation of the STANDARD and
H-CRITIC on the simulated system. Results are shown in Table I.

function. Furthermore, the usage of the history actions in
H-CRITIC over CRITIC is beneficial.

The second set of experiments defines five random goals
within the workspace of the hand, with a set of random
obstacles, and evaluates the STANDARD and H-CRITIC
approaches. The objective is to evaluate the effectiveness
of the methods for planning in different portions of the
workspace. To make it more challenging, the neural-network
model was trained over only 1% of the data which, as seen
in Figure 2a, has higher average error. A corresponding critic
was generated for it with only 20% of the remaining data.

For each goal, the planning methods were executed twice,
and for each of these runs the planned path was rolled out
10 times. The setup of the goals and obstacles can be seen
in Figure 7, with detailed statistical results for each goal
shown in Table I. In the first four goals, the H-CRITIC
was superior compared to the STANDARD approach with
higher success rate. Goal 5 is in the low error region with
not much interference from the obstacles. Thus, the results

for the trial are equivalent to the STANDARD with a slight
accuracy advantage to the H-CRITIC.

2) Real Hand Demonstration: The real hand demonstra-
tion replicates the ’horseshoe’ setup, where the hand must
manipulate the cylinder to the inside. Here again, paths
are planned by the STANDARD and H-CRITIC methods.
Figure 6 shows snapshots of one successful rollout of a
plan with H-CRITIC and two failed ones planned with the
STANDARD. As a result of inaccurate model predictions,
plans with the STANDARD approach tended to collide with
the obstacles or to pull the object too much toward the hand’s
base resulting in the actuators overloading. In contrast, plans
with the H-CRITIC were tracked more accurately (RMSE of
2.63 mm for the demonstrated one) due to the minimization
of critic error, and were therefore more successful overall in
reaching the goal region.

VI. CONCLUSION

This work proposes an independent critic model to aug-
ment a given transition model and to improve accuracy.
Instead of attempting to improve the transition model with
more data, which often is unsuccessful, the method uses the
surplus data to train a critic for evaluating the accuracy of the
original model. The critic uses a history of prior actions along
with the intended action from the current state to estimate
the prediction error. A sampling-based planner integrates the
critic into its cost function to direct solutions to regions of
accurate predictions. A set of experiments, which involve
in-hand manipulation with underactuated hands, demonstrate
that the proposed approach significantly improves in success
rate relative to standard planning. A key future direction is
the integration of the critic into belief-space planning [14],
where uncertainty can be learned with the proposed method.
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critic into its cost function to direct solutions to regions of
accurate predictions. A set of experiments, which involve
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Heatmap illustrations of the critic values projected on 
the x−y plane with regards to different action directions. 

Planning Experiments

Motion Planning with Obstacle 
Avoidance Experiments

Learning to Transfer Dynamic Models 
of Underactuated Soft Robotic Hands 

True trajectory

Trajectory predicted 
with source model

Transfer Residuals

Cumulative Residuals 
trajectory

Fig. 2. Workspace of the considered hand. Errors of predicted future states
accumulate over time. The proposed cumulative residuals approach solves
this issue by bounding the Lyapunov exponent of the transferred model.

prior knowledge from previous tasks. Another technique [25]
combines a forward dynamics model, trained in simulation,
with an inverse dynamics model trained on a real robot.

IV. PROPOSED ANALYSIS

To derive a new transfer learning algorithm that meets
the specific challenges of our problem, we first analyse the
Lyapunov exponent of a learned transition function ˆ

f as a
function of the training data D and the Lyapunov exponent
of the underlying true dynamics f . We find the primary
driver of divergence in the target regime is chaotic behavior,
characterized by a large Lyapunov exponent. As we train a
new model, we find that training not only reduces the average
error of the model, but also its Lyapunov exponent. Even
when a model does not show outright chaotic behavior, it
tends to compound on its own errors in a way that damages
its performance. This will be discussed further in the exper-
iments section. Intuitively, we show that as we accumulate
more data, the models we train become less chaotic. To do
this, we derive an upper bound on the Lyapunov exponent
of the learned transition function.
Definitions. Let r be the maximum distance from any
point x 2 X to the nearest point in D. Let ✏ be the
maximum error of ˆ

f ’s predictions on data D. In other terms,
✏ = max

x2D k ˆf(x)� f(x)k
d

, according to metric d.
Assumptions.

Let ˆ

f : S ! S be an approximation to f such that
d(

ˆ

f(x), f(x))  ✏ for all x 2 D.
Let (r ˆ

f(a) � r ˆ

f(b)) · u

kuk  c ka� bk and (rf(a) �
rf(b)) · u

kuk  c ka� bk for some c 2 R for all a, b 2 S

and all u 2 RN .
Let �

f̂

be the maximal Lyapunov exponent of ˆ

f , and �

f

be the maximal Lyapunov exponent of f .

Definition: Let x 2 D be an interior point at distance s iff
the hypersphere of radius s about x is completely contained
in S

Theorem 1. �

f̂

 �

f

+ lim

n!1
1
n

P
n

i=0 log(1 +

(4

p
6r

2
c

2
+ ✏c+ 10rc)N

��
J

�1
i

��
)

Proof:
Let x1 be a point in D. Let x1 be an interior point at

distance �x. Since no point is S is farther than r from the
nearest point in D, let us choose some point p 2 S a distance
�x from x1, and let x2 be its nearest neighbor in D, with
�x > r. Let z = x2 � x1. Then �x� r  kzk  �x+ r.

We begin by establishing a bound on the gradient of each
output variable of m

From the mean value theorem, we can see that for some
x3 = x1(1� t1) + x2t1 with t1 2 [0, 1],

ˆ

f(x2)� ˆ

f(x1) = r ˆ

f(x3) · z (1)

From this, it follows that

r ˆ

f(x3) · z  f(x2)� f(x1) + 2✏ (2)

Applying the MVT again to f , we find that for some x4 =

x1(1� t2) + x2t2 with t2 2 [0, 1]

r ˆ

f(x3) · z  rf(x4) · z + 2✏ (3)

(r ˆ

f(x3)�rf(x4)) · z  2✏ (4)

(r ˆ

f(x3)�rf(x4)) ·
z

kzk  2✏

kzk (5)

From assumption 3, we can see that

r ˆ

f(x3) ·
z

kzk  r ˆ

f(x1) ·
z

kzk + c kzk (6)

Similarly,

rf(x4) ·
z

kzk  rf(x1) ·
z

kzk + c kzk (7)

Hence,

(r ˆ

f(x1)�rf(x1)) ·
z

kzk  2✏

kzk + 2c kzk (8)

By the same reasoning, we find that for all x 2 S with
kx1 � xk < r

(r ˆ

f(x)�rf(x)) · z

kzk  2✏

kzk + 2c kzk+ 2cr (9)

(r ˆ

f(x)�rf(x)) · z  2✏+ 2c kzk2 + 2cr kzk (10)

As we can see, this holds for any x2 with �x � r 
kx2 � x1k  �x+ r.

We use the following trick obtain a bound on the norm
of r ˆ

f(x)�rf(x). Let v = �x

rf̂(x)�rf(x)

krf̂(x)�rf(x)k . Then there
exists an x2 2 D within radius r, so the above bound holds
with z = v + u with kuk  r.

Hence,

Errors of predicted future states accumulate over time. The 
proposed cumulative residuals approach solves this issue 
by bounding the Lyapunov exponent of the transferred mode.

Source Hand Target Hand

Instead of learning a new model for every new hand 
from scratch (12 more hours of data collection), we 
record only a small number of new trajectories and 
learn to transfer the original transition model. 

• Liam Schramm, Avishai Sintov and Abdeslam Boularias. "Learning 
to Transfer Dynamic Models of Underactuated Soft Robotic 
Hands". In ICRA 2020.

• Avishai Sintov, Andrew Kimmel, Kostas E. Bekris and Abdeslam 
Boularias. "Motion Planning with Competency-Aware Transition 
Models for Underactuated Adaptive Hands”. In ICRA 2020.

• Andrew Kimmel, Avishai Sintov, Juntao Tan, Bowen Wen, Abdeslam 
Boularias and Kostas E. Bekris. "Belief-Space Planning using 
Learned Models with Application to Underactuated Hands”. In 
ISRR 2019.

• Avishai Sintov, Andrew Morgan, Andrew Kimmel, Aaron Dollar, 
Kostas Bekris, Abdeslam Boularias. "Learning a State Transition 
Model of an Underactuated Adaptive Hand". In ICRA-RAL 2019.

Award  1723869

https://www.eng.yale.edu/grablab/openhand/

