
Integration of Real-time and Security

Properties in CPS

Gabor Karsai

in collaboration with Abhishek Dubey and Will R. Otte

A CPS Platform: Vehicle cluster

Ground station

Vehicles

•Propulsion system

•NAV sensors (IMU)

•Stabilizing controller

•WLAN (Mesh)

•GND comms (OPT)

Payload:

•Compute platform

•Sensor platform

Applications

•UAVs: Wide-area survey

•UUVs: Climate data collection

•Spacecraft: DARPA F6

Physical system: flight controls, navigation, vehicle

management

Cyber system: control algorithms, networking, sensor

processing and storage, (open) computing platform for

running 3rd party applications

CPS integration challenges in V/C

 Distributed real-time platform with fluctuating network

connectivity

 Real-time and safety properties and their verification

 Dynamic architecture

 Vehicles of the cluster, software apps running on the platform, security

of information flows, location of software and hardware resources used

can (be) change(d) at any time

 Secure resource sharing

 Resources must be securely shared across applications: processor,

communication links, memory, software services

 Secure resource sharing

 Resources must be securely shared across applications: processor,

communication links, memory, software services

Security challenges

 Communication links are over the air

 Solutions:

 Jamming-resistant communications

 IPSec to protect the network layer

 Open software platform for real-time distributed

applications:

 Issues:

 Protecting the platform

 Isolating the applications (from each other and from the Internet)

 Secure application management

 Minimize interference among applications (covert channels)

Many untrusted apps sharing the platform with high-criticality applications

Software platform
1.

2.

3.

4.

WLAN Vehicle

Cluster

Sensors/devices

1. Applications are built from software

components that interact via only well-defined

interaction patterns using security-labeled

messages, and are allowed to use only a

restricted set of low-level services provided by

the operating system

2. Specialized, strictly verified and trusted

platform actors provide system-wide high-level

services (e.g. application deployment, fault

management, certificate management)

3. The middleware libraries implement the high-

level real-time communication abstractions

(synchronous and asynchronous interactions)

on the underlying distributed and dynamic

platform

4. The Operating System implements all the

critical low-level services for resource sharing

(incl. spatial and temporal partitioning), secure

information flows, communication resource

management, and fault tolerance

OS

Protecting the platform

 Classic OS approach:

 Apps make special API calls to access OS

services

 Potential security issue:

 Exploit: Specially crafted data structures

passed through the OS API calls can trigger

latent security defects in the OS (leading to

uncontrolled execution of user code at a

privileged level)

 Solution: Protect the platform APIs

 API Definition: Formal spec in IDL with

annotations

 IDL compiler generates code for API

implementation that checks data structure

integrity conditions

 Benefits:

 Simple but strong protection against OS

abuse, easy to add to existing OS-s

OS Layer- Kernel space

Trusted/High-criticality /

Verified

App layer – User space

Untrusted, lower-criticality

not verified

A
P
I

IDL spec

syscall x(a,b,c)

COND(a,b,c)

IDL

Compiler

syscall x(a,b,c)

<pre-amble>

<ver COND(a,b,c)>

.

…core logic…

.

<finalize>

Isolating applications

 Spatial partitioning (Memory):

 Isolated address spaces for actors

 Implemented by (trusted) MMU

hardware, managed by (trusted) OS

 Limited (for resource management)

 Temporal partitioning (CPU):

 Fixed duration, periodically repeating

slices of processor time

 Implemented by (trusted) OS scheduler

 File system partitioning:

 Each app actor has its own isolated file

system

 Implemented by (trusted) OS

 Refinement:

 Platform (privileged and verified) actors

are not subject to temporal partitioning.

Such actors have protected APIs.

Partitions

Real-time challenges addressed:

•Actors are guaranteed to get a bounded slice

of the CPU resources: memory and time

Security challenges addressed:

•Apps cannot interfere with each other

through shared memory and the shared

processor

•Covert channel bandwidth mitigated

Secure information flows

 Apps communicate via secure

endpoints via flows

 Apps cannot create endpoints and

flows, only privileged platform

actors can

 Endpoints are similar to sockets but:

(1) created by the Deployment

Manager (platform actor), (2) require

security labels on all messages, (3)

message transfers are time-stamped

 Flows are the logical (1-1, 1-*)

connections between endpoints that

represent information flows that are

(1) created by the DM, (2) managed by

the (trusted) OS, (3) can be mapped to

various transport protocols (UDP,

SCTP) running on IPSec

Network

(Mesh)

WNIC

WNIC

Secure information flows
 Security labels: elements of a lattice

structure describing classification.

 Deployment (by DM):

 Actor A is deployed with label X, its EP is

created

 Actor B is deployed with label Y, its EP is

created

 OS#1/2 knows A/X - B/Y and the flow

between EPs

 Labeled communications

 Actor A sends a message via its EP – must

supply a label

 OS#1 checks whether (1) A can use the label

(i.e. X), (2) the labeled message can be sent a

recipient with label Y. The message is sent to

OS #2 only if the checks pass.

 OS #2 checks whether (1) the labeled

message can be delivered to B (with label Y).

The message is delivered only if the checks

pass.

Actor

A

Label X

OS #1

OS #2

EP

Actor

B

Label Y

EP

Network

(Mesh)

Mandatory Access Control

Network communications

Network

(Mesh)

WNIC

WNIC

 Implementation details

 Network bandwidth is capped and actors are

provided a budget

 Various transport classes are available: critical,

time-triggered, rate-constrained, best effort

 Real-time challenges addressed:

 Message timestamps allow the recipients

know the communication delays

 Constant network conditions allow

guaranteed real-time transfers

 Security challenges addressed:

 Apps cannot get to the Internet directly

 Apps cannot abuse the communication

resource

 Apps cannot perform unauthorized (un-

configured) communications

Secure application management
 Deployment Manager: a (trusted) privileged

platform actor, responsible for all app deployment

and configuration activities on the platform

 Deployment Plan: a data structure (XML)

describing the complete configuration of the

system, including security labels

 Process: the DM parses the plan and (1) creates

the (temporal) partition schedule, (2) creates

endpoints and flows, (3) creates actors and assigns

their labels, (3) configures application internals, (4)

 DM is distributed: every OS has one instance – a

lead DM orchestrates a distributed deployment

process

 Security challenges addressed:

 All apps are activated by a trusted entity

 All secure communication links are set up by a

trusted entity

Deployment

Plan

Deployment

Manager

Deployment

Manager

Slave DM

Summary

 Security concerns in distributed CPS necessitate a re-

thinking of the design paradigm

 Platform protection

 Secure information flows

 Trusted application management

 Security solutions must be integrated with a modern

software platform that includes an OS layer and a real-

time component model

 An open source implementation of the platform is being

developed under the System F6 program of DARPA.

