Intelligent Intersection Management with Non-Connected and Non-Autonomous Motorcycles

Chia-Chu Kung, Tsung-Lin Tsou, Chung-Wei Lin

National Taiwan University Taipei, Taiwan

Introduction

Intelligent intersection management is a very representative application of connected and autonomous vehicles

- > Many existing works address the problem from different perspectives
 - Centralized approaches
 - Distributed approaches
 - Connected, non-connected, and mixed-type vehicles
 - Autonomous, non-autonomous, and mixed type vehicles
- However, motorcycles have not yet been considered in intelligent intersection management
 - Do motorcycles really matter? Can we regard motorcycles as vehicles, as many countries' policies?

Waterfall of Motorcycles

https://www.taiwannews.com.tw/en/news/3501986

A Left-Turn Accident

https://www.youtube.com/watch?v=7jGPtAEd9yY

Key Features

Designated rightmost lane

- The rightmost lane is for motorcycles only, and the other lanes are for vehicles
- Besides going straight and turning right, a motorcycle on the rightmost lane may intend to turn left
 - This is very different from existing intelligent intersection management, as the left-turn motorcycles will block more traffic than left-turn vehicles

Non-autonomy and non-connectivity

- Connected and autonomous vehicles are more likely to mature before connected and autonomous motorcycles
 - Due to the existing technology, customer willingness, and relative cost

High density

Regarding the number of motorcycles and vehicles per unit area, motorcycles can move with a higher density

Related Work

Centralized intelligent intersection management

- Distributed intelligent intersection management
- □ Intelligent intersection management with mixed traffic
- Motorcycles in transportation

Contributions

Model and study the intelligent intersection management with motorcycles

□ Use **grouping** and **two-phase left turns with waiting zones** for motorcycles to improve the traffic efficiency of an intersection

Vehicles are connected and autonomous

Motorcycles are non-connected and non-autonomous

Demonstrate essential trade-offs and insights for designing intelligent intersection management with motorcycles

Outline

System Modeling

- □ System Design
- Case Study
- **G** Summary

Intersection and Trajectory

Vehicles, Motorcycles, and Manager

□ Vehicles: connected and autonomous

- Send information to the intersection manager
- Receive instructions from the intersection manager

Motorcycles: non-connected and non-autonomous

- Be tracked by road-side units
- Follow traffic lights

Intersection manager

- Receive information of vehicles and provide instructions to vehicles via communication
- Collect motorcycles' information from road-side units and use traffic lights to control motorcycles

Objective

□ Travel time

- > The time length
 - From the time that a vehicle or a motorcycle enters the range of the intersection
 - To the time that it leaves the range of the intersection

Non-delay travel time

- Assume that there is no interference by any vehicle, motorcycle, or traffic light
- Delay = travel time non-delay travel time

Objective

> Minimize the average delay of all vehicles and motorcycles

Outline

- System Modeling
- System Design
- Case Study
- **G** Summary

Basic Setting

Separated phases for vehicles and motorcycles

Vehicle phase (control of vehicles)

- First-come-first-go policy
 - All vehicles share the vehicle phase

Motorcycle phase (control of motorcycles)

- Control by time-length
- Control by grouping motorcycles
- Two-phase left turns with waiting zones

Control by Time-Length

One phase for vehicles

Vehicles from all directions and all lanes can share the phase as they are connected, autonomous, and following the <u>first-come-first-go policy</u>

One phase for motorcycles on each motorcycle lane

Motorcycles on other lanes and all vehicles cannot enter the intersection

□ Five design parameters

Time-lengths of the vehicle phase and the four motorcycle phases

Control by Grouping Motorcycles

Motorcycles on one lane can enter the intersection if

The number of waiting motorcycles on the lane reaches the pre-defined grouping size

Vehicles can enter the intersection if

- The numbers of waiting motorcycles on all motorcycle lanes do not reach the pre-defined grouping sizes
- Four design parameters
 - Grouping sizes of the four motorcycle lanes

Two-Phase Left Turns with Waiting Zones

Two-Phase Left Turns with Waiting Zones

One phase for vehicles

- Vehicles from all directions and all lanes can share the phase
- One phase for motorcycles on each pair of opposite motorcycle lanes (+ their waiting zones)
 - > Motorcycles on $\lambda_{0,3}$ and $\lambda_{2,3}$ can enter the intersection together
 - > Motorcycles on $\lambda_{1,3}$ and $\lambda_{3,3}$ can enter the intersection together

□ Three design parameters

Time-lengths of the vehicle phase ' and the two motorcycle phases

Outline

- System Modeling
- System Design
- Case Study
- **G** Summary

Simulator

SUMO-0.19.0

- Low-level control
- Delay calculation
- Visualization

Default Setting

Arrivals and directions

- > Poisson distribution with 2 arrivals per second (highly congested traffic)
- \geq Probabilities of a motorcycle & a vehicle = $P_M \& 1 P_M$
 - P_M is set to 0.1, 0.3, 0.5, 0.7, and 0.9
- Uniform distribution for source direction
- Probabilities of turning left & going straight & turning right
 - 0.25 & 0.5 & 0.25 for vehicles
 - $P_L \& 2^*(1 P_L) / 3 \& (1 P_L) / 3$ for motorcycles
 - P_L is set to 0.1, 0.3, 0.5, 0.7, and 0.9

Will report

- \succ The average delay of all vehicles and motorcycles: Δ_A
- \succ The average delay of all vehicles: Δ_v
- \succ The average delay of all motorcycles: Δ_{M}

[EXP1] Connectivity: Settings

Purpose

Show the impacts of motorcycles

□ Setting 1-1

> All vehicles and motorcycles are connected and autonomous

All follow first-come-first-go policy

□ Setting 1-2

- Mixed-autonomy traffic
- Control by time-length
- > Total period is set to 90, 120, 160, 250, and 800 seconds
 - Motorcycle phase: 80 seconds
 - Vehicle phase: 10, 40, 80, 170, and 720 seconds --- roughly match the ratio of the number of vehicles to the number of motorcycles (P_M = 0.9, 0.7, 0.5, 0.3, and 0.1)

[EXP1] Connectivity: Results 1-1

\Box When P_M is fixed, P_L increases $\rightarrow \Delta_A$ increases

> A left-turn motorcycle has more trajectory conflicts

□ When P_L is fixed, $P_M = 0.5 \rightarrow \Delta_A$ is largest

> There are more trajectory conflicts between a vehicle and a motorcycle

The impacts of motorcycles, especially left-turn motorcycles, on the traffic efficiency are significant

		P_L												
P_M	0.1	0.3	0.5	0.7	0.9									
0.1	46.6	50.8	58.1	57.7	60.6									
0.3	65.4	65.3	80.4	97.4	105.0									
0.5	81.0	89.8	104.3	122.6	136.2									
0.7	66.7	78.4	93.9	111.3	128.6									
0.9	58.7	71.4	92.2	109.4	109.7									

[EXP1] Connectivity: Results 1-2

$\Box \Delta_{V}$ is always smaller than Δ_{M}

The vehicle phase uses first-come-first-go policy

\Box When P_M = 0.1, Δ_M is large and Δ_A is small for each P_L

> Motorcycles averagely need to wait longer until the next green light

 $\succ \Delta_A$ benefits from a longer vehicle phase and higher ratio of vehicles

S	8 (s	28	P_L													
	Period	0.1		0.3		0.5			0.7			0.9				
P_M	(second)	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A
0.1	800	182.4	818.7	248.2	162.7	743.0	215.8	215.0	713.7	256.9	217.8	917.6	293.2	177.3	770.2	236.4
0.3	250	228.0	454.9	292.9	200.4	426.0	266.4	180.9	447.3	263.1	234.5	501.7	315.7	228.6	531.5	326.6
0.5	160	235.5	466.2	356.3	215.4	413.1	313.1	190.7	435.7	319.3	224.5	453.8	341.0	263.6	443.3	349.1
0.7	120	243.7	424.3	372.0	271.3	410.0	365.1	184.5	408.4	347.0	168.7	395.9	329.1	241.4	390.2	341.3
0.9	90	264.5	380.1	367.4	273.8	401.0	38 <mark>6.</mark> 3	269.9	370.5	359.0	253.2	415.6	399.7	253.1	344.0	334. <mark>1</mark>

[EXP2] Grouping: Settings

- Control by grouping motorcycles
- Setting 2-1
 - ➢ Grouping size is set to 1, 5, 10, and 15

Setting 2-2

- > All vehicles are from top or bottom, and all go straight
- > All motorcycles are from bottom, and all turn left

Setting 2-3

- > All vehicles are from bottom, and all go straight
- All motorcycles are from bottom, and all turn left

[EXP2] Grouping: Results 2-1

□ When P_M is 0.3, 0.5, 0.7, and 0.9, the grouping size increases → Δ_A decreases

Vehicles and motorcycles are affected frequently without grouping

When P_M is 0.1, this trend
is not clear

There are too few going through the intersection or forming a group

8 6	Grouping	0		P_L		ñ.
P_M	Size	0.1	0.3	0.5	0.7	0.9
0.1	1	227.6	140.5	190.0	231.9	177.3
	5	241.9	199.0	237.4	257.7	223.8
	10	4 <u>1</u>	<u>10-0</u> 1	1 <u>1</u> 21	1 <u>1</u> 21	<u>14</u> 85
	15	×	<u></u>	<u> </u>	<u> </u>	
0.3	1	518.2	507.4	482.6	573.6	586.2
	5	301.0	293.7	297.3	328.2	359.6
	10	250.0	270.0	247.3	293.9	290.0
	15	240.0	235.2	217.3	240.4	285.1
0.5	1	821.9	697.2	765.6	743.3	781.6
	5	392.3	339.5	363.9	353.2	376.8
	10	329.0	287.1	290.7	293.8	319.9
	15	295.1	251.5	290.6	271.8	273.2
0.7	1	900.1	857.6	838.5	813.4	794.7
	5	389.1	382.4	363.2	356.9	348.2
	10	334.6	311.3	301.3	286.8	300.6
	15	305.0	281.1	281.1	264.4	264.9
0.9	1	888.6	919.3	907.2	1025.0	804.0
	5	356.9	375.2	366.2	398.7	339.7
	10	298.4	321.7	301.0	329.7	280.7
	15	278.0	279.8	276.0	318.6	253.4

[EXP2] Grouping: Results 2-2

□ When P_M is fixed, grouping size increases $\rightarrow \Delta_V$ decreases in most cases, but Δ_M increases

- Larger grouping size prevents motorcycles from blocking vehicles but increases queuing time of motorcycles
- □ When grouping size is fixed, P_M increases → Δ_V increases, but Δ_M decreases
- \Box When grouping size is fixed, $P_M = 0.5 \rightarrow \Delta_A$ is largest

÷		Grouping Size													
	1			5				10	2 22	15					
P_M	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A			
0.1	57.5	0.0	51.6	4.4	27.0	6.2	3.6	59.4	6.8	5.5	87.6	12.2			
0.3	145.0	0.0	100.8	97.3	9.4	71.4	62.3	18.0	49.6	47.6	42.1	45.9			
0.5	318.0	0.0	157.4	201.7	2.6	112.2	145.0	7.6	85.6	129.7	15.3	79.5			
0.7	446.2	0.0	116.3	280.0	1.2	88.4	210.6	4.8	72.9	206.2	8.4	72.1			
0.9	513.1	0.0	73.4	293.7	1.2	52.2	204.4	3.7	41.3	190.6	7.8	42.9			

[EXP2] Grouping: Results 2-3

□ Most are the same as setting 2-2

- The grouping size 15 is not necessarily better than the group size 10 for Δ_v
 - Motorcycle blocks vehicles from two lanes in setting 2-2, but one lane in setting 2-3, making grouping less effective

	38	Grouping Size													
	1			5				10	15	15					
P_M	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A	Δ_V	Δ_M	Δ_A			
0.1	56.2	0.0	45.4	4.2	30.9	8.4	3.0	63.8	9.6	5.4	85.9	18.6			
0.3	71.5	0.0	48.5	24.8	21.1	23.5	13.7	38.3	18.9	8.1	56.7	17.3			
0.5	143.5	0.0	71.8	81.0	10.1	45.9	62.6	27.4	45.0	44.8	37.0	40.9			
0.7	187.2	0.0	63.0	102.9	8.9	42.5	66.5	19.4	36.2	70.6	25.8	41.7			
0.9	251.0	0.0	20.7	130.1	3.0	15.8	58.6	7.5	12.9	33.9	14.3	16.3			

[EXP3] Waiting Zone: Settings

Control by two-phase left turns with waiting zones Setting 3-1 $\lambda_{1,3}$ and $\lambda_{3,3}$ $\lambda_{1,3}$ and $\lambda_{3,3}$ $\lambda_{0,3}$ and $\lambda_{2,3}$ $\lambda_{0,3}$ and $\lambda_{2,3}$ Vehicle Motorcycle Motorcycle Motorcycle Motorcycle Phase Phase (20 sec) Phase (20 sec) Phase (20 sec) Phase (20 sec) Setting 3-2 $\lambda_{0,3}$ and $\lambda_{2,3}$ $\lambda_{1,3}$ and $\lambda_{3,3}$ Vehicle Motorcycle Motorcycle Phase Phase (40 sec) Phase (40 sec) Setting 3-3 $\lambda_{0,3}$ and $\lambda_{2,3}$ $\lambda_{1,3}$ and $\lambda_{3,3}$ Vehicle Motorcycle Motorcycle Phase Phase (20 sec) Phase (20 sec)

[EXP3] Waiting Zone: Results

□ Settings 3-1, 3-2, and 3-3

2	3		P_L													
	Period	0.1		0.3		0.5		0.7				2				
P_M	(second)	Δ_V	Δ_M	Δ_A												
0.1	800	182.4	646.6	230.4	162.7	733.3	214.9	215.0	709.0	256.5	217.8	1067.8	309.4	177.3	1008.7	260.2
0.3	250	228.0	306.2	250.4	200.4	370.5	250.2	180.9	411.4	252.0	234.5	558.0	332.8	228.6	702.8	382.0
0.5	160	235.5	278.7	258.1	215.4	335.3	274.6	190.7	492.7	349.2	224.5	548.8	389.3	263.6	557.0	403.2
0.7	120	243.7	260.3	255.5	271.3	351.5	325.5	184.5	448.3	375.9	168.7	498.4	401.4	241.4	459.8	388.1
0.9	90	264.5	212.4	218.2	273.8	324.8	318.9	269.9	397.5	382.8	253.2	529.2	502.1	253.1	481.6	456.7

2	ð	1	P_L													
	Period	0.1		s	0.3		0.5			0.7			0.9			
P_M	(second)	Δ_V	Δ_M	Δ_A												
0.1	800	182.4	668.4	232.6	162.7	788.2	219.9	215.0	818.6	265.7	217.8	1170.2	320.4	177.3	1125.5	271.9
0.3	250	228.0	259.0	236.9	200.4	324.6	236.8	180.9	350.0	233.1	234.5	481.5	309.5	228.6	609.8	351.9
0.5	160	235.5	232.9	234.1	215.4	261.9	238.4	190.7	365.5	282.4	224.5	409.8	318.6	263.6	480.3	366.7
0.7	120	243.7	196.6	210.2	271.3	261.2	264.5	184.5	338.8	296.4	168.7	357.1	301.7	241.4	397.0	345.9
0.9	90	264.5	171.5	181.7	273.8	255.6	257.7	269.9	296.0	293.0	253.2	382.2	369.5	253.1	371.4	358.5

8	5		P_L													
	Period	0.1			0.3			0.5			0.7			0.9		
P_M	(second)	Δ_V	Δ_M	Δ_A												
0.1	800	182.4	877.1	254.2	162.7	1009.6	240.1	215.0	1070.3	286.8	217.8	1722.8	380.0	177.3	1576.0	316.8
0.3	250	183.5	591.9	300.3	159.7	718.7	323.2	143.4	775.6	338.5	189.7	987.7	432.2	186.3	1209.7	517.4
0.5	160	146.7	569.9	368.2	142.8	624.8	381.1	118.3	883.0	519.8	137.9	942.3	546.8	162.6	1038.7	579.2
0.7	120	89.3	564.4	427.0	107.0	696.7	505.6	72.5	858.4	642.8	78.7	874.0	640.1	96.0	937.8	661.4
0.9	90	31.3	514.2	461.3	28.1	693.5	616.7	22.3	777.9	691.1	29.8	1006.7	910.7	23.3	896.3	801.0

[EXP3] Waiting Zone: Results

Comparison among Setting 1-2, 3-1, 3-2, and 3-3

- → When $P_M = 0.1$ and P_L ranges from 0.1 to 0.5 → Setting 3-1 has the smallest Δ_A
 - Theory in scheduling
- → When P_M ranges from 0.3 to 0.9 and P_L ranges from 0.1 to 0.7 → Setting 3-2 has the smallest Δ_A
 - More transitions between phases, forcing approaching motorcycles to decelerate (similar to yellow lights)
- ➢ In the remaining scenarios (P_L is even larger) → Setting 1-2 has the smallest Δ_A
 - Waiting zones benefit straight and right-turn motorcycles

Design Insights

When there are about the same number of vehicles and motorcycles, Δ_A has the largest value

- \succ Trade-off between Δ_{V} and Δ_{M}
- Left-turn motorcycles which have more trajectory conflicts with other vehicles or motorcycles need to be taken care of

\Box In general, Δ_A benefits from grouping motorcycles

 \succ Still, trade-off between Δ_{V} and Δ_{M}

□ In general, Δ_A also benefits from two-phase left turns with waiting zones

Good separations for vehicles and motorcycles

The design can also be applied to system with non-connected and non-autonomous vehicles

A potential solution to mixed-traffic scenarios

Outline

- System Modeling
- System Design
- Case Study
- **Summary**

Summary

- Modeled and studied the intelligent intersection management with motorcycles
- Used grouping and two-phase left turns with waiting zones for motorcycles to improve the traffic efficiency of an intersection
- Demonstrated essential trade-offs and insights for designing intelligent intersection management with motorcycles

Thank You!

Email: cwlin@csie.ntu.edu.tw