

Interactive Tree Decomposition Tool for Reducing
System Analysis Complexity

Shahan Yang, Baobing Wang and John S. Baras

Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20740, USA

{syang, briankw, baras}@umd.edu

Copyright © 2012 by the Institute for Systems Research. Published and used by INCOSE with permission

Abstract. We present a graphical tool for the calculation of treewidth, a metric on the

parametric structure of a system that is intimately tied to the complexity of system analysis.

For many graphically describable systems, such as systems of parametric equations, as in a

SysML Parametric diagram, or Bayesian networks or even mind maps and writing term

papers, analysis of the system is exponential in treewidth and linear in system size. A tool

facilitating comprehensive analysis can serve to bring competitive advantage to a systems

engineering workflow by reducing costly unanticipated behaviors. Furthermore, a byproduct

of computing treewidth is a framework for enumerating computationally compatible

distributed algorithms.

Though there are classes for which treewidth computation is tractable (chordal graphs), it is

generally NP-complete. For this reason, we pose the problem from the perspective of finding

satisficing solutions, exposing choices that can influence the complexity of the resulting

system to the designer. A designer can contribute two important things to the structure of the

system: a visual intuition about the relationships between the underlying objects and the

ability to change the relationships themselves at design time to reduce analysis complexity.

Having a visual tool that provides instant feedback will help designers achieve an intuitive

grasp of the relationship between design decisions and system complexity. As complexity is

the root of almost every systems engineering problem, and also something not easily

understood, incorporating complexity analysis into a design process should improve resulting

system designs.

The tool uses a randomized, anytime algorithm for interactive optimization of treewidth. It

presents a sequence of choices to a designer and incrementally lowers an upper bound on

system treewidth over time. This algorithm is novel, as few algorithms are targeted at

interactivity with a human user.

We present a number of simple examples for using the tool. We show how our tool helps to

decompose some example systems, including a quadrotor optimization, a sensor network

optimization, a Bayesian network, and a mind map.

Introduction

As systems engineers, we are intimately familiar with using graphical models to describe

systems. However, these graphical models are non-unique and there is usually a wide range

of behaviorally equivalent ways to model the same problem. One successful application of

graphical models from a different community is Bayesian networks (see [Pearl 1988] for a

review). In this work, we take some of the mathematical analysis of the graphical models of

Bayesian networks and translate it into terms that are more familiar to systems engineers. In a

systems oriented fashion, we may think of the Bayesian network as being a subclass of the

more abstract class of commutative semirings, which has many other subclasses. See Figure

1.

+Domain = {0,1}

+AdditionOperator = OR

+MultiplicationOperator = AND

BooleanAlgebra

+Domain = Reals

+AdditionOperator = max

+MultiplicationOperator = +

Tropical

+Domain = [0,1]

+AdditionOperator = +

+MultiplicationOperator = *

Bayesian

+Domain

+AdditionOperator

+MultiplicationOperator

Semiring

Figure    1.    Interpretation  of  different  commutative  semirings  by  subclasses.  One 

particularly interesting subclass from the perspective of systems engineering is the Tropical 

semiring.  It  encodes  optimization  over  structures  where  the  overall  cost  function  is  the 

sum of costs over individual components.  

The basic essence of each of these cases is to solve a problem described over a network of

components where decisions in one component may affect the choices available in another

component and there is a global objective that can only be understood by examining the

complete space of decisions. Examples of this class of problem include vertex cover,

independent set, dominating set, graph k-colorability, hamiltonian circuit, network reliability

[Arnborg et al. 1989], and dynamic programming [Bodlaender 1988]. This class of problems

is computationally challenging in general and embodies the curse of dimensionality. Using

structural decomposition techniques of systems engineering is one approach towards solving

these problems. However, there are very few tools available for doing this systematically. We

present a tool that achieves this.

It turns out that complexity is exponential in treewidth and linear in problem size. The

intuition behind this result is that problems on graphs are difficult to solve due to the presence

of loops. Removing the loops by multiplexing variables (aggregating them into objects) can

lead to the tree decompositions of graph problems. Once the problem is in the form of a tree,

then summary propagation is a viable technique for solving the problems. Multiplexing

variables creates local complexity roughly in proportion to the number of variables tied

together. More precisely, if we consider a discrete context, the space that needs to be

explored is the product of the number of discretization bins, ie, if there are N variables with D

quantization levels each in an aggregate object, then the complexity of analyzing that object

in D
N
. The complexity of the overall system is the summation of the complexity of analyzing

each system independently. This sum is dominated by largest exponent in the system, which

is precisely what the treewidth measures (see Appendix for details).

Our Contribution. In [Yang et al. 2011], we presented some theory of tree decomposition.

This work describes a prototype that we have been working on to make the theory usable and

many examples of problem solved using this tool. The main contribution of this work is an

interactive tool for measuring treewidth of systems. A byproduct of this measurement is a

system tree decomposition that can be used for analysis. We work out many examples using

the tool and describe the algorithm used.

Tool Development and Case Studies

Tool Development. To facilitate the usage and enhance the understanding of the tree search

algorithm, a user-friendly GUI is developed in Java, which enables users to control the

execution of the algorithm interactively and view the result graphically. The GUI is shown in

Figure 2, painting the relationship graph for the parameters in our case study, which will be

explained later.

Figure 2. GUI and the generated relationship graph for the case study  

Function definitions can be loaded from a pre-saved file, or input to the table in the upper left

corner, by specifying their names and parameters. Then they can be checked and parsed to

the data structures used in the tree search algorithm. If all functions are defined correctly, the

tree search algorithm will process the chordal vertices automatically. The algorithm control

area in the lower left corner will provide the list of unprocessed parameters and the

parameters that have already been processed. Users can select an unprocessed parameter to

continue the algorithm and the resulting treewidth will be calculated and updated

incrementally. Users can also roll back the algorithm to its previous state and make a

different choice, potentially with a smaller tree width.

An observer thread is running in the background to update the relationship graph of the

parameters and the resulted tree of cliques periodically, which are shown in the right tabbed

panel. Users can also update them instantly by clicking the “Refresh” button. Based on the

characteristics of the graph and the tree, users can select different layout algorithms to place

the vertices automatically to get a better view, or arrange them manually. The Java Universal

Network/Graph (JUNG) Framework [JUNG 2011] is used for data visualization.

Wireless Sensor Networks. We consider the trade-off analysis between energy efficiency

and transmission reliability in wireless sensor networks, where the IEEE 802.15.4 standard is

applied as the media access control protocol. For simplicity, we only provide high-level

abstract functions here, emphasizing the abstract relationships between the parameters in each

function. More details are available in [Wang et al. 2011]. The following functions are used

in this trade-off analysis, in which the blue parameters are their outputs:

Tradeoff(score, energy, rel) = 0. This function specifies the trade-off rules between energy

efficiency and transmission reliability.

Reliability(rel, dist) = 0. This function calculates the reliability based on the static

distribution of the Markov Chain model in [Wang et al., 2011], which models the

peer-to-peer communications for time-critical applications in wireless sensor networks using

the enhanced IEEE 802.15.4 protocol.

StaticDist(dist, config) = 0. This function computes the static distribution, based on the

configuration information specified for the protocol.

Config(config, retry, waitRound, lambda) = 0. This function processes the protocol

parameters, such as the maximum retransmission times and the maximum waiting rounds, to

generate the configuration information.

Lambda(lambda, constant) = 0. This function is defined to simplify the Config function, by

processing other protocol-specific constants and feeding the result to the Config function.

Energy(energy, config, pGTS, pCAP) = 0. This function calculates the expected energy

consumption for each transmission, based on the configuration information, and the expected

energy consumptions in the contention-based access period (CAP) and in the guranteed

time-slot period (GTS).

PGTS(pGTS, config , pIdle, pRcv, pTx) = 0. This function computes the expected energy

consumption in the GTS period, based on the transmission power, receiving power, the power

in the idle state and the configuration information.

PCAP(pCAP, pIdle, pRcv, pTx, per) = 0. This function is very similar to the PGTS

function, except that the packet error ratio (PER) is considered here.

PER(per, size) = 0. This function simply calculates the PERs based on packet sizes.

The generated tree of cliques is shown in Figure 3, in which each vertex stands for a clique in

the relationship graph of parameters, and the edge direction represents the reverse order of

information propagation. When a vertex has received the information from all its children, it

begins to calculate the parameters in its clique locally and propagate the result back to its

parent. Now suppose every parameter can have 10 different values (continuous parameters

can be sampled discretely). Then the complexity can be reduced significantly to:

102 × 2 + 103 × 3 + 104 × 2 + 105 + 106 = 1123200

compared to 10
16

 in the original computation.

Figure 3. The generated tree of cliques. 

Quadrotor Example. Figure 4 shows the relationships between variables in a quadrotor that

is designed to fly out to a specified destination, land, perch and take observations. It uses a

parametric diagram, which is exactly equivalent to a factor graph, in being a bipartite graph

that has variable nodes in one partition and function nodes in the other partition. The fact that

it is a factor graph means that summary propagation can be used as a solution algorithm with

the correct interpretation of the summation and multiplication operations. This particular

parametric diagram reflects a query on the tradeoff between range and cost. The constraint

Tradeoff is a query in this case and modifies the structure of the parametric diagram, which in

turn has an impact on the resulting tree decomposition. In working with this system of tree

decompositions, this dependency of structure on the query occurs often. If a query relates two

variables that were previously unrelated, then a link must be added to the graph reflecting this

added coupling.

«constraint»

 : Cost

Battery
Cost

Payload

«constraint»

 : Weight

Battery

Payload

Weight

«constraint»

 : PerchTime

Payload PerchTime

«constraint»

 : Range

Battery

FlightCurrentRange

«constraint»

 : Current

FlightCurrent

Weight

«constraint»

 : Tradeoff

Cost

Range

FlightCurrent

PerchTimePayload

Battery

Weight

Range

Cost

Figure    4:  Parametric  diagram  for  high  level  tradeoffs  of  a  quadrotor.  Consider  the 

constraints  shown  in  this  diagram.  The  Tradeoff  constraint  reflects  the  fact  that we  are 

interested in the relationship between cost and range of the quadrotor. As indicated by the 

Cost constraint, the cost value is determined entirely,  in this model, by choice of payload 

and battery. The weight is also determined by these two variables, as shown by the Weight 

constraint. The range of the quadrotor, as indicated by the Range constraint, is determined 

by  the  choice  of  battery  and  the  power  requirements  expressed  as  current.  The  flight 

current needed is determined by the weight of the quadrotor, as indicated by the Current 

constraint. Finally, there is a perch time variable that is solely determined by the payload 

as shown in the PerchTime constraint.  

The different functions specify feasible regions of values for the various parameters, but there

is a locality structure to this specification because certain variables are not directly related.

For example, the current needed to fly the quadrotor depends on the weight (as indicated in

the Current constraint, but these variables are not directly connected to the cost). Weight

depends on the battery and payload chosen, which then directly contribute to the cost.

We would like to determine all feasible configurations with respect to range and cost in our

trade study. We shall assume that every parameter takes on a discrete set of values, which

could come from discretization. Naively, there are 7 variables in this system. Evaluating over

all of them simultaneously using brute force could involve D
7
 evaluations, where D is the

number of discretization levels.

Figure 5 shows the input to the tool. Compare this to Figure 4. The name column contains

exactly entries corresponding to the constraints of the parametric diagram and the parameter

column contains the arguments to those constraints.

Figure  5. Input to the tool representing the relationships between the variables. 

Figure 6 shows the initial flattened topology of the quadrotor (the functional dependence

graph in the language of [Yang 2011]).

Figure   6. This  shows  the  initial graph extracted  from the  input  relationships of Figure 5. 

Note  that  this  graph  is  not  chordal  which means  that  the  designer  will  need  to  choose 

additional variable couplings for the system to decompose. 

At this point, the designer has a decision to make because the only simplical node is

PerchTime, which is eliminated by the algorithm. Elimination on the rest of the nodes creates

fillins. To make this decision, the designer thinks about which variables most naturally fit

together with respect to the fillins created. Since the relationship between weight and range is

the most intuitive, the next elimination is FlightCurrent, which creates a fillin between weight

and range. This is shown in Figure 7.

Figure  7. This shows the graph of Figure 6 under the condition of eliminating the variable 

FlightCurrent. This creates a fillin between weight and range, which are intuitively related, 

which  is  why  FlightCurrent  is  chosen  for  elimination  rather  than  another  variable.  One 

more fillin will be neeed to complete the system decomposition. 

A link was added between weight and range, coupling these two variables within the analysis

even though there is no immediate equation describing this relationship. This is an artifact of

performing the tree decomposition of the system. Of the remaining variables, the next most

intuitive relationship is the one between payload and range, so we eliminate cost next, which

requires payload and range to be coupled. Figure 8 shows the result.

Figure  8. Shows the chordally decomposed system with the two fillins, weight‐range and 

payload‐range. This system is chordal and has a tree decomposition. The tree structure is 

somewhat apparent in this diagram. It consists of three tetrahedrons that are stacked next 

to each other and a tail consisting of the PerchTime, which is only loosely coupled with the 

rest of the system.   

The tool produces Figure 9 as the tree decomposition of the system using these hints from the

designer.

Figure  9.  The resulting tree decomposition from the analysis performed in Figures 4‐8. 

The last step in the analysis described in [Yang et al. 2011] is to map the original constraints

and functions back to the resulting join tree. The most natural language for expressing this is

a block diagram, as shown in Figure 10. There is always a way to assign the constraints back

to the aggregations in such a way that every constraint has all its parameters in its local block.

Though mapping is not unique in general, it happens to be unique in this case.

constra ints

{Range(Battery,Range,FlightCurrent)
{Current(FlightCurrent,Weight)}

values

Battery
FlightCurrent
Range
Weight

«block»

Range

constra ints

{Weight(Weight,Battery,Payload)}

values

Battery
Payload
Range
Weight

«block»

Weight

constra ints

{PerchTime(PerchTime,Payload)}

values

Payload
PerchTime

«block»

Perch

constra ints

{Cost(Cost,Battery,Payload)}
{Tradeoff(Cost,Range)}

values

Battery
Cost
Payload
Range

«block»

Metrics

Battery,Payload,Ra
nge

Payload

Battery,Range,Wei
ght

Figure    10.  This  shows  the  completed  block  diagram  of  the  tree  decomposition  of  the 

quadrotor.  In  this  example,  the  assignment  of  the  constraints  back  to  the  structure  is 

unique,  but  that  is  not  necessary  in  general.  The  constraints  are  the  same  as  those 

constraints  in  the  input  parametric  diagram  and  the  variables  are  assigned  to  blocks 

exactly  as  the  tree  decomposition  of  Figure  7 would  indicate.  The  associations  between 

blocks are labeled according to the shared variables. 

To analyze the system shown in Figure 10, we use a very simplistic algorithm using sets.

Each block, Perch, Metrics, Weight, and Range, can be thought of as describing a set of

feasible points based on the constraints. The overall space of the system can be described as

the intersection of the spaces described in the blocks. To apply summary propagation, what

we use set intersection as the multiplication operation and projection as the summation

operation. Since this is a trade study, our goal is to evaluate the Metrics block. Figure 11

depicts the general strategy of evaluation. Using the decomposition of Figure 10 reduces the

complexity of analyzing the system from D
7
 down to 3D

4
+D

2
. This is a significant reduction.

Suppose, for example, we use a grid of 20 points. while

 which is orders of magnitude fewer samples.

Figure  11: Summary propagation applied to the block diagram of Figure 10. We treat each 

of the blocks as sets. The overall system is understood as the  intersection of all  the sets. 

We can use a generalized version of summary propagation to efficiently run queries on this 

structure. 

Traffic Intersection. Figure 10 shows the interference graph for a traffic intersection. Figure

11 shows a join tree computed by the tool. This is essentially a Boolean satisfaction problem

where we are searching for all the satisfying instances.

Figure  12.  TTW denotes the traffic light controlling traffic from the west that is turning left 

(north) and TW denotes the traffic light controlling traffic coming from the west and going 

east. There is a link between two variables if they are not permitted to be simultaneously 

green. 

Figure    13.    One  of  the  possible  join  trees  generated  by  the  tool.  Since  Figure  12  is  not 

chordal, this is not a unique decomposition. Note that the interface or shared variables are 

te, tte, ttw and tw. 

It is not immediately clear how to analyze the system using the join tree given in Figure 13

since the variables are highly coupled. We take the nodes of Figure 12 and rearrange them so

that the interface variables te, tte, ttw and tw are in the middle separating the rest of the

variables. Figure 14 shows the result of this manipulation.

Figure  14.  This graph, derived from the join tree of Figure 13, reveals the structure of the 

traffic  intersection  dependence  graph  intuitively.  We  can  see  that  ttw te  and  tte tw 

disable  the  opposite  pairs  of  lights.  Among  themselves,  they  also  have  some  structure. 

They do not oppose each other at all, in fact, so the compatible configurations are ttw and 

(tw or tte). The other possible configurations are symmetrical to these. 

Join Tree for a Bayesian Network. The traditional usage for junction trees is performing

inference on Bayesian networks. Figure 15 shows a Bayesian network depicting a disease

diagnosis inference. Figure 16 shows its corresponding loop-free join tree that is suitable for

inference.

Figure  15. A graph showing a Bayesian network for diagnosing lung conditions. This graph 

is coincidentally chordal, so the algorithm converges immediately to a unique solution. 

Figure  16. A graph depicting the join tree of the Bayesian network from Figure 15. The join 

tree is loop free so summary propagation is an exact inference algorithm. 

Mind Mapping. One problem that occurs when writing a paper is taking a graph that

represents the ideas in the paper and linearizing it into an outline. This tool can help in doing

this. Figure 17 shows the graph structure of some concepts used in a different paper.

Figure  17. A map of concepts in a paper. This graph is coincidentally chordal. 

Figure 18 depicts the tree representation of the graph in Figure 17. The tool helps convert the

graph representation into a tree representation of the information. The tree can then be

conveniently linearized into an outline.

Figure  18. A tree view of the contents of Figure 17. This tree can be directly translated into 

an  outline  for  a  paper.  In  fact, many  outlines  can  be  produced  from  this  tree.  The  first 

degree of freedom is the choice of a root node. Since a property of trees is that a unique 

path exists between any pair of nodes,  identifying a root induces a partial order over the 

tree. The suborderings must also be determined to linearize the tree structure. 

Discussion

One interesting property of the technique is how counterintuitive these join trees are from the

perspective of creating block diagrams. However, looking at Figure 6 reveals an interesting

relationship between the geometry of the chordal decomposition and the resulting block

structure. The Battery and Range variables are shared by the three blocks. It is apparent in the

geometry that these two variables form an axis which connect the three tetrahedrons and thus

Battery and Range are shared variables over three of the blocks in the block diagram. We are

not accustomed, as engineers to expressing decompositions using shared variables, although

it is apparent that this is natural because the constraint structure has a both locality and a

dependence structure. Having a tool for performing this analysis certainly helps in finding the

tree decompositions.

As shown through the examples, this is a very general technique that can be applied to many

domains. In the examples of this paper, the sets are static in nature. In [Yang et al. 2012], we

show how the same technique of composition and projection can help in the formal analysis

of dynamic Bayesian networks.

Future Work

The current tool only implements the basic join tree algorithm that can be found in [Jensen

2007]. This algorithm utilizes the fact that ordering the cliques in reverse of the elimination

order that generates them provides a way to constructively attach the cliques into a clique.

[Ibarra 2009] describes a means to generate all possible join trees. The cliques generated by

the algorithm are unique and can be used to create the clique-separator graphs of [Ibarra et al.

2009]. The specific join tree could be a design decision for the system and it would be good

to extend the tool to allow interaction over these structures. In [Yang et al. 2011], a further

addition to the clique separator is to remap the original constraints back to the resulting

cliques. This mapping is proven to exist for the clique decomposition but it is not unique, so

the tool should also assist with this step.

It should also be possible to map parametric diagrams directly into inputs for this tool, given

how similar they are structurally. Automated generation of block diagrams should then be

possible as well from the output of the tool. The full version of this paper will likely include

these features.

Conclusions

We have presented a tool that uses an interactive method to compute junction trees and show

how the technique can be applied in structuring the analysis of broad range of systems.

Theoretically, problems that can be encoded as commutative semirings are amenable to

analysis by this technique, but it is not limited to this domain. We believe this tool and

graphical decomposition technique could be of use to many systems engineers. It is

complexity aware and generates decompositions that are amenable to localized computational

analysis.

Appendix: Formal Description

Definition 1 Define a system as the tuple

with and for . Each is a set corresponding to the

domain of a system variable . Each , for is a general component that

influences the variables with domains .

Observe that in general, the values are not disjoint. In this model, the sharing of variables

between components indicates communication between those components. We may draw in

SysML, a parametric diagram to capture any system as defined above. (See Figure 2 for an

example.) The constraint blocks are the components of the system and the variables

correspond to the variables of the system. Each constraint block has its own associated

list of variables .

Definition 2 Define the flattening of a system as the graph with

Every parameter set defined by , for , induces a clique of mutually connected

nodes in the flattened graph, .

Definition 3 Define the elimination of a node from the graph , written

, as the graph , where is defined

with being the set of links in the clique induced by the set of neighbors,
1
, of .

This definition reflects the fact that in a semiring context, eliminating a variable (by

summation) first entails collecting all the constraints that include that variable. The induced

clique over the neighbors of effects the necessary collection of constraints.

Let be a permutation of . All such s can be viewed as elimination

orderings.

Definition 4 The sequence of graphs induced by an elimination ordering ,

, is defined and for , .

It is clear from the above definition that must be an empty graph because all nodes

are eliminated. This elimination induces also a sequence of cliques in the graph.

Definition 5 The sequence of cliques induced by an elimination ordering ,

, is defined as , for . is the

set of neighbors of in the graph from the sequence of graphs induced by .

Note that in this definition, there may be cliques that are contained in other cliques

 with .

Definition 6 The width of graph with respect to ordering , is defined as the size

of the maximum size clique in the sequence of induced cliques minus :

The extra minus ensures that the treewidth of a tree is .

Definition 7 The treewidth of a system may be defined in terms of an optimization over

elimination orderings of the width of a system.

or expanding Definition 6

 (1)

Theorem 1 The treewidth generated by elimination orderings as in Definition 7 gives the

minimal tree decomposition of the system.

The optimization in equation (1) is NP-hard [Arnborg 1987]. Since such problems are not

tractable in general, we seek heuristic or approximate solutions and give the user the ability to

interactively solve the problem. Random search is a powerful solution technique for many

NP-hard problems. We present a hierarchical algorithm utilizing random search that

computes a sequence of upper bounds on treewidth.

1
 is defined as the set . Since Definition 2 forbids self links, .

Definition 8 A node is simplical if all of its neighbors are mutually connected.

Since the optimization parameter is a permutation, the search space has a tree structure. There

are subsequences of the permutation that are determined and do not need to be searched.

Specifically, when there are simplical nodes in the network, they can be eliminated

immediately, furthermore when there are multiple simplical nodes in the network, the order

of their elimination does not affect the resulting treewidth.

Theorem 2 Let and be two simplical nodes in the graph . Then

Elimination of simplical nodes is commutative.

Eliminating a simplical node from a graph creates no fillins because all its neighbors are

mutually connected. Eliminating therefore removes from the set of nodes and any links

including . The same is true of eliminating . The resulting graph after eliminating both

and from the graph has the nodes and the set of edges not including

 or . It is clear that the order of and does not matter to the resulting graph.

Theorem 3 Let be an elimination order where and are both simplical in the graph

. Then the elimination induces the same

width as , .

 and differ only in swapping and , so . Also, by Theorem 2,

STS

There are two cases to consider, when and are neighbors and when they are not. In the

case where and are neighbors, the fact that is simplical in graph implies that

 is connected to all of its neighbors and vice versa. This implies that and are part

of the same clique in . So and are symmetrical and indistinguishable WRT to

the sizes of the cliques formed. In the case where and are not neighbors, it is clear that

 and because the eliminations are completely

independent of one another. Theorem 3 states that elimination of simplical nodes is

commutative WRT the width of the resulting graphs.

Corollary 1 Simplical nodes can be eliminated in any order without impacting the width of

the graph.

The algorithm for finding treewidth can be sketched out as follows.

1. Eliminate all simplical nodes (in any order).

2. If any nodes remain, eliminate one randomly.

3. If any nodes remain, return to step (1).

This algorithm eventually finds all permissible elimination orders if run enough times as

there are only finitely many elimination orders. The probability of not finding a particular

order is roughly where is the number of orderings and is the number of

iterations.

We would like to speed up convergence of the above algorithm and to do so, we collect

statistics about the decisions made and use those statistics to improve future guesses. The

algorithm that we implement here builds a tree of prespecified bounded size. See Figure 19.

The system uses a predefined size for the search tree, bounded by memory constraints. At

each node of the tree, a metric representing the sample mean under blind search from that

node is maintained. The algorithm alternates between blind search and directed search. The

blind search samples alternatives uniformly. The directed search samples branches in

proportion to the expected value of the score function, which in this case is where is

the expected width of a branch.

In order to maintain a nominal tree size, the algorithm runs in two phases. An expansion

phase and a pruning phase. In the expansion phase, nodes are added based on their weight.

We start with nodes and every time a branch occurs, we multiply by the weight of that

branch which is equal to . This formula is applied recursively, so as the tree descends,

the weights decrease. A branch is added if the remaining weight is . A pruning phase

removes branches with weight less than . It is possible for branches to be pruned because

weights change as more measurements become available. The depth of the tree that is kept in

memory varies as a function of the the expected score. Paths in the tree that score better will

naturally expand deeper in the exploration.

Figure  19. This figure shows the search tree through the permutation space. The nodes are 

the different eliminations possible and the graph extends downwards. The shaded region 

represents just those nodes held in memory for which statistics are collected. 

References

Arnborg, S. and Proskurowski, A. 1989. “Linear time algorithms for NP-hard problems

restricted to partial k-trees.” Discrete Applied Mathematics 23(1): 11–24.

Arnborg, S., Corneil, D. G. and Proskurowski, A. 1987. “Complexity of finding embeddings

in a k-tree.” SIAM J. Algebraic Discrete Methods 8: 277–284.

Bodlaender, H. 1988. “Dynamic programming on graphs with bounded treewidth.”

Automata, Languages and Programming: 105–118.

Ibarra, L. 2009. “The clique-separator graph for chordal graphs.” Discrete Appl. Math. 157:

1737–1749.

Jensen, F. V. and Nielsen, T. D. 2007. Bayesian Networks and Decision Graphs. Springer

Publishing Company, Incorporated, 2nd edition.

JUNG Framework Development Team. 2011. “JUNG: the Java Universal Network/Graph

Framework (Version 2.0.1).” Accessed 7 November.

http://jung.sourceforge.net/index.html.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann.

Wang, B. and Baras, J. S. 2011. “Performance Analysis of Time-Critical Peer-to-Peer

Communications in IEEE 802.15.4 Networks.” Paper presented at the Proceedings of

the IEEE Intl. Conference on Communications (ICC), Kyoto, Japan, 5–9 June.

Yang, S. and Baras, J. S. 2011. “Factor Join Trees for Systems Exploration.” Paper presented

at 23rd International Conference on Software & Systems Engineering and their

Applications, Paris, France.

Yang, S. and Zhou, Y. and Baras, J. S. 2012. “Compositional Analysis of Dynamic Bayesian

Networks and Applications to CPS.” Submitted for publication.

Biography

Shahan Yang is a postdoctoral researcher with the Institute for Systems Engineering, at the

University of Maryland. He completed his doctorate at the University of Maryland in 2007 on

automated analysis security of ad hoc wireless routing protocols. Since then he has worked as

a Principle Engineer at BAE Systems as part of several IRAD efforts in security and wireless

networking. Prior to this, he was a consultant working for defense research agencies,

telecommunications companies and in bioinformatics. His current research interest is the

integration of systems engineering and formal methods and probabilistic model checking. He

is also working on systems engineering based approaches to cyber physical systems.

Baobing Wang is a 3rd-year Ph.D student in the Department of Electrical and Computer

Engineering at the University of Maryland, College Park. He is working with Prof. John S.

Baras on Model-Based Systems Engineering for cyber-physical systems, especially the

system modeling, design and synthesis for wireless sensor networks. Mr. Wang received his

B.S. degree in Computer Science in 2006 from the Harbin Institute of Technology, China,

and MPhil degree in Computer Science in 2009 from the City University of Hong Kong,

Hong Kong SAR.

John S. Baras holds a permanent joint appointment as professor in the department of

electrical and computer engineering and the Institute for Systems Research. He was the

founding director of ISR, which is one of the first six National Science Foundation

engineering research centers. Dr. Baras is the Lockheed Martin Chair in Systems Engineering

and is the founding and current director of the Center for Hybrid and Satellite

Communication Networks, a NASA commercial space center. He also serves as a faculty

member of the university's Interdisciplinary Program in Applied Mathematics and an affiliate

professor in the Computer Science Department.

