

Interdisciplinary Undergraduate Workshop on Dynamics of Excitable Systems Elizabeth M. Cherry¹, Conner Herndon², Abouzar Kaboudian², Flavio H. Fenton², and ¹School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY; ²School of Physics, Georgia Institute of Technology, Atlanta, GA

Workshop Overview

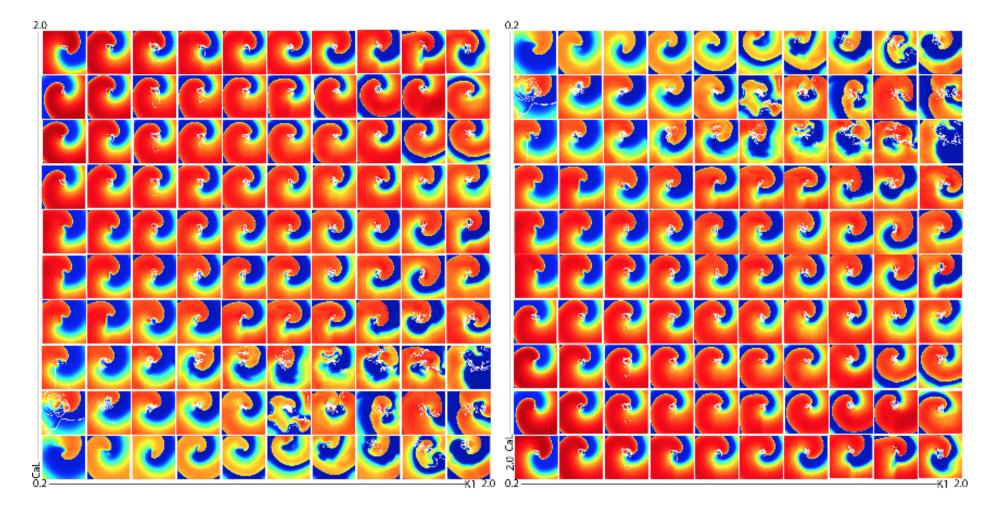
- Held January 8-14, 2017 (5 full and 2 half days).
- Located at RIT using a standard classroom, computer lab, and chemistry lab.
- Key goal of the workshop: provide students with an interdisciplinary perspective.
- Students had the opportunity to learn about and oscillatory systems excitable using complementary theoretical, experimental, and computational approaches.
- Participants were assembled into teams that included at least two different majors to facilitate learning from different perspectives and communicating across disciplines.

Participant Information

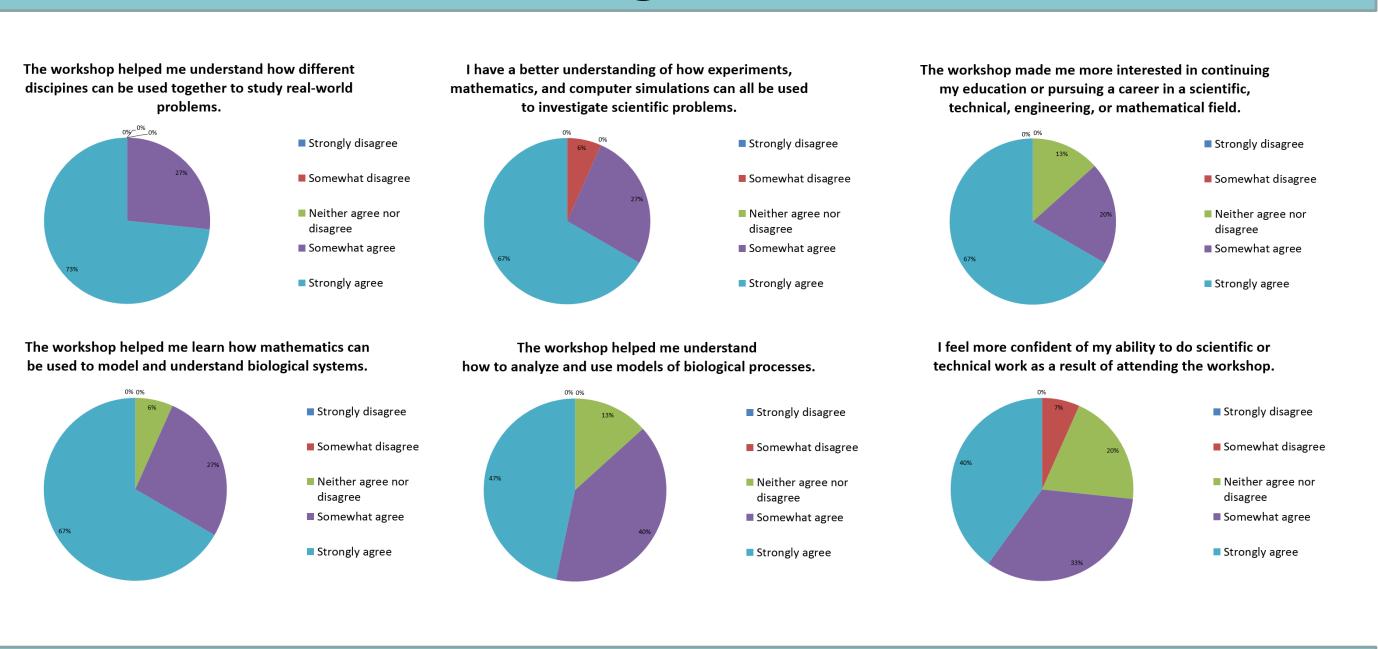
- 18 student participants.
- 50-50 gender breakdown (9 female, 9 male).
- 2 AALANA.
- 8 institutions: Harvey Mudd College University of Delaware Stony Brook University · University of Rochester Nazareth College · Georgia Institute of Technology Rochester Institute of Technology University of Maryland Baltimore County

Preliminary Activities

- Human spiral wave.
- Lectures on the mathematics of dynamical systems (fixed points, bifurcations, oscillations, and chaos).
- Chemical and physical demonstrations of these properties (oscillating Briggs-Rauscher reaction, Belousov-Zhabotinsky propagating reaction, saline oscillator, candle oscillator.
- Computational exercises (logistic map, pendulum, FitzHugh-Nagumo equations) helped students understand how the mathematics they learned and the physical systems could be understood geometrically.



Heart Anatomy


 Introduction to cardiac action potentials, electrical waves in the heart, and the heart's conduction system. • Dissection of preserved sheep hearts in groups to learn cardiac anatomy.

Computational Experiments

Project used GPU-accelerated web-based codes to map out the dynamics of parameter space in a popular cardiac model.

Students varied the strength of ion channel conductances in models of cardiac action potentials coupled together in tissue and studied the effects on spiral wave stability/breakup.

The students' results will be incorporated in a manuscript currently in preparation.

- coding, which I enjoyed.
- The hands-on experiments were nice complements to computer simulations.
- The saline oscillator was quick to get up and running, as well as the best example for how we can vary different parameters and get different results.
- I liked that the three approaches (analytical, graphical, and computational) were used and taught together because if I felt weak in grasping one, the other bolstered it.
- Learning about using WebGL was extremely useful as parallelization is an essential tool in scientific computing. (It seemed very interesting, too!)
- Using Matlab to improve our understanding of the behavior of fixed points in dynamic systems and studying n-cycles definitely heightened my understanding of the impact of fixed points on dynamical systems.
- Running simulations on the TNNP [ten Tusscher-Noble-Noble-Panfilov] model that had never been done before was awesome! Felt like I was helping to advance science.
- I really enjoyed being able to share our findings and have discussions regarding what they meant in a broader sense.

Assessing Outcomes

Student Comments

I enjoyed pondering the human spiral wave (done at Georgia Tech) and creating a program to simulate it; this activity bettered my understanding of spiral waves and

Acknowledgements

Supported by NSF Grants CNS-1446312 and CNS-1446675.