

CAREER: Intermittent Learning Framework for Smart and Efficient

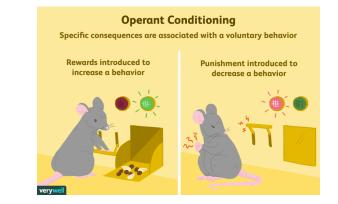
Cyber-Physical Autonomy

Prof. Kyriakos G. Vamvoudakis The Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology Web: http://kyriakos.ae.gatech.edu/ Project's Web: http://kyriakos.ae.gatech.edu/NSFCareer.html Email: Kyriakos@gatech.edu ID: CPS-1750789, CPS-1851588

Why Intermittent Learning in CPS?

Allow full CPS autonomous operation in the face of unknown, bandwidth restricted, and adversarial environments

- The schedules of intermittent learning are either based on time (interval) or on behaviors (ratio) and can be fixed or variable.
 - □ Fixed-interval schedule is when a behavior is rewarded after a set amount of time.
 - ❑ Variable-interval schedule, is when a CPS agent gets the reinforcement based on varying and unpredictable amounts of time.
 - □ Fixed-ratio schedule, is when there are a set number of responses that must occur before the behavior is rewarded.
 - □ Variable-ratio schedule, is when the number of responses needed for a reward varies.

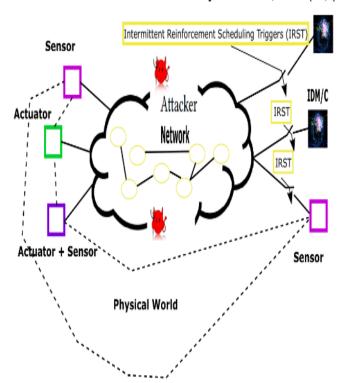


This distinction in the quality of performance can help determine which reinforcement method is most appropriate for a particular CPS situation; fixed ratios are better suited to optimize the quantity of output, whereas a fixed-interval can lead to a higher quality of output.

Description

Goals of This Project:

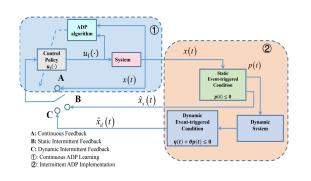
- How can we incorporate and fully adapt to totally unknown, dynamic, and uncertain environments with intermittent learning?
- How do we co-design the action and the intermittent schemes? How can we provide quantifiable real-time performance, stability and robustness guarantees by design?
- How do we solve congestion and guarantee security?

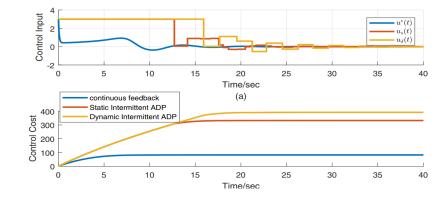


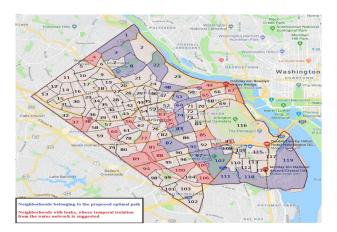
Intelligent Decision Maker/Controller (IDM/C)

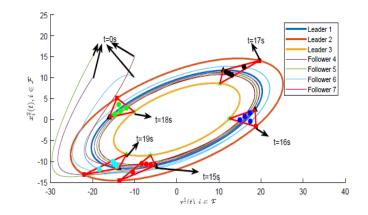
Findings

- Static and intermittent learning through approximate dynamic programming
- Dynamic intermittent feedback design For containment control
- Predictive intermittent Q-learning with application to CPS/IoT



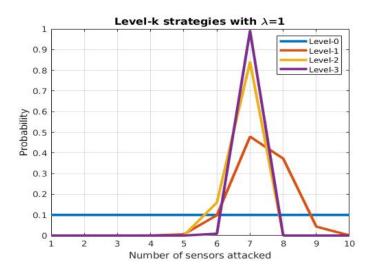






Findings

- Learning the levels of intelligence
- The limiting conditions as the cognitive levels increase, as well as when the CPS agents fully coordinate, are shown to converge to the Nash equilibrium.
- Each level-k agent behaves based on intermittent and subjective beliefs of the others' behaviors.



1: 1	procedure
2:	Given initial state x_0 , cost weights M, R, γ , highest allowable level defined to be \mathcal{K} and time window
1	C _{IRL} .
3:	for $k = 0, \dots, \mathcal{K}$ do
4:	Set $i := u$ to learn the level-k defender policy.
5:	Start with an initial guesses for $\hat{W}_{u}^{k}, \hat{W}_{u,a}^{k}$.
6:	Propagate the augmented system with states $\chi = \begin{bmatrix} x^T & \hat{W}_u^{kT} & \hat{W}_{u,a}^{kT} \end{bmatrix}^T$
7:	Set $j := d$ to learn the level-k adversarial policy.
8:	Start with initial guesses for \hat{W}_{d}^{k} , $\hat{W}_{d,a}^{k}$.
9:	Propagate the augmented system with states $\chi = \begin{bmatrix} x^T & \hat{W}_d^{kT} & \hat{W}_{d,a}^{kT} \end{bmatrix}^T$ Go to 3.
10:	end for
11:	Define the interaction time with each adversary as T_{int} , the number of total interactions n_{int} and an initi guess for λ .
12:	for $i = 1, \dots, n_{\text{int}}$ do
13:	For $t \in [t_i - T_{int}, t_i]$, measure the value
14:	Compute the mean level
15:	Update λ Go to 13 to interact with a different adversary.
16:	end for

Findings

- Proactive defense Probabilistic switching combining overall uncertainty/optimality for non equilibrium intermittent learning.
- Reactive defense Isolate the suspicious learning components.

