
Introducing Embedded Systems:
A Cyber- Physical Systems Approach

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

CPS PI Meeting
Education Keynote

National Harbor, Maryland
October 5, 2012

With special thanks to my
collaborators:
•  Jeff Jensen, National Instruments
•  Sanjit Seshia, UC Berkeley

Lee, Berkeley 2

Background: Five Years of Experience with
“Introduction to Embedded Systems”

This course is intended to introduce students to
the design and analysis of computational systems
that interact with physical processes.

A major theme of this course will be on the
interplay of practical design with formal models of
systems, including both software components and
physical dynamics. A major emphasis will be on
building high confidence systems with real-time
and concurrent behaviors.

The course has recently been extended to
become a mezzanine-level course, aimed at
advanced undergraduates and beginning graduate
students. Dovetails with a new professional
masters program with a focus on robotics and
embedded systems.

•  Cyber-Physical Systems
•  Model-Based Design
•  Sensors and Actuators
•  Interfacing to Sensors and Actuators
•  Actors, Dataflow
•  Modeling Modal Behavior
•  Concurrency: Threads and Interrupts
•  Hybrid Systems
•  Simulation
•  Specification; Temporal Logic
•  Reachability Analysis
•  Controller Synthesis
•  Control Design for FSMs and ODEs
•  Real-Time Operating Systems (RTOS)
•  Scheduling: Rate-Monotonic and EDF
•  Concurrency Models
•  Execution Time Analysis
•  Localization and Mapping
•  Real-Time Networking
•  Distributed Embedded Systems

Lee, Berkeley 3

Approach: Interplay of
Modeling, Design, and Analysis

http://LeeSeshia.org

Lee, Berkeley 4 http://LeeSeshia.org

Lee, Berkeley 5

This Talk: Focus on Design
(and specifically, design of software)

¢  Traditional design of embedded systems:
 Embedded software is software on small computers. The technical
problem is one of optimization (coping with limited resources and
extracting performance).

¢  CPS-based design of embedded systems:
 Computation and networking integrated with physical processes. The
technical problem is managing dynamics, time, and concurrency in
networked computational + physical systems.

Lee, Berkeley 6

Our Approach:
Emphasis on Critical Thinking

“Our view is that the field of cyber-physical systems is
very young, and it would not serve our students well to
leave them with the illusion that completing the course
equates to mastery of the subject.”

[Lee, Seshia, Jensen, WESE 2012]

We teach them to think critically about today’s technology,
not just to master it.

Lee, Berkeley 7

Design Lab:
Structure

¢  6 weeks of structured
labs introducing
students to some of
the tools of the trade.

¢  9 weeks of group
projects.

Draft lab manual available…

Lee, Berkeley 8

The Tools of the Trade

In the first six
weeks, students get
experience with
three levels of
abstraction in
embedded software
design.

Model-Based Design
 Concepts:
 Concurrent models of computation,
 code generation, determinism, ...

Real-Time Operating Systems
 Concepts:
 Scheduling, priorities, mutual exclusion,
 nondeterminism, ...

Bare-Iron Programming
 Concepts:
 Interrupts, polling, memory models, timing, ...

Lee, Berkeley 9

The Hardware Platform
for the First Six Weeks

Modified iRobot
Create with
wireless
networking,
many built-in
sensors, and
a three-axis
accelerometer.

Lee, Berkeley 10

Computational Platform:
Single-Board Rio (National Instruments)

This board provides
all three layers of
abstraction:

¢  Bare iron C

programming on a
Xilinx Microblaze soft
core.

¢  RTOS C programming
on a PowerPC
running VxWorks.

¢  LabVIEW model-
based design with
code generation.

analog & digital IO Xilinx

FPGA

Freescale

PowerPC

SD card USB Ethernet CAN RS-232 Serial

Lee, Berkeley 11

The “Harry Potter” Approach to
Embedded Software Design

(Bare Iron Level)

On an Atmega 168 (a popular 8-bit microcontroller):

// Set timer1 to generate an interrupt every 1ms

TCCR1A = 0x00;

TCCR1B = (_BV(WGM12) | _BV(CS12));

OCR1A = 71;

Learn the right spells, and
express them with conviction...

Expelliatmega!

Lee, Berkeley 12

The Emphasis on Critical Thinking
(Bare Iron Level)

TCCR1B = (_BV(WGM12) | _BV(CS12));

#define _MMIO_BYTE(mem_addr)(*(volatile uint8_t *)(mem_addr))
#define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr)

#define _BV(bit) (1 << (bit))

#define TCCR1B _SFR_MEM8 (0x81)

#define WGM12 3

#define CS12 2

(*(volatile uint8_t *)(0x81)) = (1 << 3) | (1 << 2);

Hunt for header files used by the compiler

C preprocessor

Although TCCR1B appears to be a C variable, it is not (and cannot be, since C
provides no way to force a variable to reside at a particular memory address).
Evidently, C is not a perfect match for the problem at hand!

Lee, Berkeley 13

The Emphasis on Critical Thinking
(RTOS Level)

Levels of
abstraction for
concurrent
programs.

Critical thinking
requires
understanding
pitfalls of
scheduling and
locks.

Lee, Berkeley 14

A Scenario

Under Integrated Modular Avionics,
software in the aircraft engine continually
runs diagnostics and publishes diagnostic
data on the local network.

Proper software
engineering practice
suggests using the
observer pattern.

An observer
process updates
the cockpit display
based on
notifications from
the engine
diagnostics.

Lee, Berkeley 15

Threads: the Prevailing
Concurrency Model

#include <pthread.h>
...
int value;
pthread_mutex_t lock;

void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ... add the listener to the list ...
 pthread_mutex_unlock(&lock);
}

void update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 ... copy the list of listeners ...
 pthread_mutex_unlock(&lock);
 ... notify the listeners on the copy ...
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ... start diagnostic & observer threads.
}

A carefully constructed “thread
safe” multitasking solution.

It turns out it carries risk of
lurking errors…

If multiple threads call update(),
the updates will occur in some
order. But there is no
assurance that the listeners will
be notified in the same order.
Listeners may be mislead
about the “final” value.

Lee, Berkeley 16

Recall the Scenario

Under Integrated Modular Avionics,
software in the aircraft engine continually
runs diagnostics and publishes diagnostic
data on the local network.

Proper software
engineering practice
suggests using the
observer pattern.

An observer
process updates
the cockpit display
based on
notifications from
the engine
diagnostics.

Lee, Berkeley 17

The Emphasis on Critical Thinking
(Model-Based Design Level)

Levels of
abstraction for
concurrent
programs.

Critical thinking
requires
understanding
concurrent models
of computation.

Lee, Berkeley 18

Model-Based Design

Emphasis on
concurrency and timing.

Lab experience with
LabVIEW, classroom
discussion of other
model-based design
formalisms.

stop

accel x
accel y

5

0.25alpha

output = (1 - alpha)
 * sum + alpha * input;

input

outputalpha

sum

output = (1 - alpha)
 * sum + alpha * input;

input

outputalpha

sum

lowpass (exponential moving average) filter

Accelerometer update loop (200 Hz)

sensors
stop

iRobot Drive Direct.vi

Cal Climber State Machine.vi

0.1Tilt Threshold (g)

250Max Wheel Speed (mm/s)
5Speed Increment (mm/s^2

interpret acccerometer
accel x
accel y

x offset (V)
y offset (V)

uphill angle (rad)
+1g offset (V)

25

Control loop (40 Hz)

iRobot Sensor Stream Read (all sensors).vi

stop

sensors

15iRobot sensor interval (ms)

1sensor stream align delay (ms)

If a packet is read, delay until next packet should
arrive; otherwise, wait a short period to see if
a packet has arrived (aligning with the stream)

iRobot sensor update loop (67 Hz)

Lee, Berkeley 19

Capstone Projects
¢  Cegway-like two-wheel robot
¢  Distributed Pacman
¢  Cooperative self-parking vehicles
¢  Face-tracking quadrotor
¢  Robotic convoys
¢  Elevator operator
¢  Automatic xylophone
¢  Dataglove gesture replicator
¢  Gesture-driven robot steering
¢  Mapping and localization
¢  Robotic summo wrestling
¢  …

Lee, Berkeley 20

Capstone Projects

Lee, Berkeley 21

The Canon

Teachers should teach what they know.

Actually, the most valuable teachers are the ones who
teach what is not known…

Lee, Berkeley 22

Conclusion

Our job isn't to get our students to replicate us.

Our job is to get our students to replace us.

If we succeed, our students will make us obsolete.

If we fail, their students will make us obsolete.

Lee, Berkeley 23

Backup Slides

Lee, Berkeley 24

Applications First? Or Foundations First?

Top-down:
- applications first
- derive the foundations

Bottom-up:
- foundations first
- derive the applications

Lee, Berkeley 25

Class Projects are Defined by
the Students. Example:

May 16, 2008

One of the five project teams in 2008
developed a balancing robot inspired by
the Segway. They used a Nintendo
Wiimote as a controller communicating
with a PC running LabVIEW,
communicating with a Lego Mindstorm
NXT, which they programmed in C.

Lee, Berkeley 26

Modeling
Physical
Dynamics

Lee, Berkeley 27

Actor Model of Systems

A system is a function that
accepts an input signal and
yields an output signal.

The domain and range of
the system function are
sets of signals, which
themselves are functions.

Parameters may affect the
definition of the function S.

Lee, Berkeley 28

State Machines and Modal Models

Modal models
combine such actor
models with state
machines, where
each state of the
machine represents
a mode of
operation.

