
Introduction to Cyber-Physical Systems
(CPS)

Xenofon Koutsoukos

Department of Electrical Engineering and Computer Science
Vanderbilt University

Summer 2017 1

2

CPS: Computing Perspective
•  Two types of computing systems

–  Desktops, servers, PCs, and
notebooks

–  Embedded
•  The next frontier

–  Mainframe computing (60’s-70’s)
•  Large computers to execute big

data processing applications
–  Desktop computing & Internet

(80’s-90’s)
•  One computer at every desk to do

business/personal activities
–  Embedded computing (21st

Century)
•  “Invisible” part of the

environment
•  Transformation of industry

•  Number of microprocessor
units per year

–  Millions in desktops
–  Billions in embedded processors

•  Applications:
–  Automotive Systems

•  Light and heavy automobiles,
trucks, buses

–  Aerospace Systems
•  Airplanes, space systems

–  Consumer electronics
•  Mobile phones, office electronics,

digital appliances
–  Health/Medical Equipment

•  Patient monitoring, MRI, infusion
pumps, artificial organs

–  Industrial Automation
•  Supervisory Control and Data

Acquisition (SCADA) systems for
chemical and power plants

•  Manufacturing systems
–  Defense

•  Source of superiority in all
weapon systems

CPS: Systems Perspective
Sectors Opportunities
Transportation Aircraft that fly faster and further on

less energy. Air traffic control
systems that make more efficient
use of airspace.
Automobiles that are more capable
and safer but use less energy.

Defense More capable defense systems;
defense systems that make better use
of networked fleets of autonomous
vehicles.

Energy and
Industrial
Automation

New and renewable energy sources.
Homes, office, buildings and
vehicles that are more energy
efficient and cheaper to operate.

What are Cyber-Physical Systems?
Deeply integrating computation, communication, and control

into physical systems

Transportation
• Faster and safer vehicles (airplanes, cars,
etc)

• Improved use of airspace and roadways
• Energy efficiency
• Manned and un-manned

Energy and Industrial
Automation
• Homes and offices that are more
energy efficient and cheaper to operate

• Distributed micro-generation for the
grid

Healthcare and
Biomedical
• Increased use of effective in-home care
• More capable devices for diagnosis
• New internal and external prosthetics

Critical Infrastructure
• More reliable power grid
• Highways that allow denser traffic with
increased safety

•  Pervasive computation, sensing and control
•  Networked at multi- and extreme scales
•  Dynamically reorganizing/reconfiguring
•  High degrees of automation
•  Dependable operation with potential

requirements for high assurance of
reliability, safety, security and usability

•  With / without human in on-the-loop
•  Conventional and unconventional

substrates / platforms
•  Ranges from the very small – BioCPS

(DNA and Micro-robots) to the large
(Boeing 787 / Airbus 380) to the very large
(city scale)

Application Domains Characteristics of
CPS

4

CPS Definition

A CPS is a system in which:
§  information processing and physical processes

are so tightly integrated that it is not possible to
identify whether behaviors are the result of
computations, physical laws, or both working
together

§  where functionality and salient system
characteristics are emerging through the
interaction of physical and computational objects

Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Power
generation and

distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Avionics
Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

6

Top twelve economically
disruptive technologies (by 2025)

CPS is a big part of “The
Future” (according to McKinsey)…

7

CPS Research is Fundamental to
Smart and Connected Communities

and Internet of Things

Smart Homes
& IoT

8

9

10

Transformation of Industries:
Automotive

§  Current picture
§  Largely single-vehicle focus
§  Integrating safety and fuel economy (full hybrids,

regenerative braking, adaptive transmission control,
stability control)

§  Safety and convenience “add-ons” (collision
avoidance radar, complex airbag systems, GPS, …)

§  Cost of recalls, liability; growing safety culture
§  Better future?

§  Multi-vehicle high-capacity cooperative control
roadway technologies

§  Vehicular networks
§  Energy-absorbing “smart materials” for collision

protection (cooperative crush zones?)
§  Alternative fuel technologies, “smart skin”

integrated photovoltaics and energy scavaging, ….
§  Integrated operation of drivetrain, smart tires,

active aerodynamic surfaces, …
§  Safety, security, privacy certification; regulatory

enforcement
§  Time-to-market race

Image thanks to Sushil Birla, GMC

Example: Toyota autonomous vehicle
technology roadmap

Source: Toyota Web site

11

12

§  National Health Information Network,
Electronic Patient Record initiative
§  Medical records at any point of service
§  Hospital, OR, ICU, …, EMT?

§  Home care: monitoring and control
§  Pulse oximeters (oxygen saturation), blood glucose

monitors, infusion pumps (insulin), accelerometers
(falling, immobility), wearable networks (gait
analysis), …

§  Operating Room of the Future (Goldman)
§  Closed loop monitoring and control; multiple

treatment stations, plug and play devices; robotic
microsurgery (remotely guided?)

§  System coordination challenge
§  Progress in bioinformatics: gene, protein

expression; systems biology; disease
dynamics, control mechanisms

Images thanks to Dr. Julian Goldman, Dr. Fred Pearce

Transformation of Industries:
 Health Care and Medicine

13

§  Current picture:
§  Equipment protection devices trip

locally, reactively
§  Cascading failure: August (US/Canada)

and October (Europe), 2003
§  Better future?

§  Real-time cooperative control of
protection devices

§  Or -- self-healing -- (re-)aggregate
islands of stable bulk power (protection,
market motives)

§  Ubiquitous green technologies
§  Issue: standard operational control

concerns exhibit wide-area
characteristics (bulk power stability and
quality, flow control, fault isolation)

§  Context: market (timing?) behavior,
power routing transactions, regulation

IT Layer

Images thanks to William H. Sanders, Bruce Krogh, and Marija Ilic

Transformation of Industries:
 Electric Power Grid

§  Dreamliner
§  ~1330 networked

microprocessors
§  50% of design cost ($ and

time)
§  Correctness of software

challenge
§  Cybersecurity (i.e., GPS

spoofing)

14

Transformation of Industries:
Manned and Unmanned Aerial Vehicles

Google, Amazon, and
Walmart want to deliver
products to your doorstep
nearly instantly by using
drones

15

Transformation of Industries:
Smart Buildings

In a few words…
Cyber-physical systems are smart, complete systems of
tomorrow;

Cyber-physical systems will enable ubiquitous technologies
and applications for the future.

Advances in cyber-physical systems will reshape our world with
more responsive, secure, and efficient systems that:

•  Transform the way we live
•  Drive economic prosperity
•  Underpin national security
•  Enhance societal well-being
•  Users depend on and may bet their life on

16

Long-Term Goal
§  Transform how we interact with the

physical world just like the internet
transformed how we interact with one another.
§  Transcend space
§  Control the physical environment remotely

§  Building CPS that integrate computational and
physical objects requires new systems science
foundations.
§  Fusion of physical and computational sciences

Produce significant impact on society and national
competitiveness.

18

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;

import java.io.*;

import java.net.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

/**

 * Core implementation of a server session
 *

 * @author James Duncan Davidson [duncan@eng.sun.com]
 * @author James Todd [gonzo@eng.sun.com]

 */

public class ServerSession {

 private StringManager sm =

 StringManager.getManager("org.apache.tomcat.session");
 private Hashtable values = new Hashtable();

 private Hashtable appSessions = new Hashtable();
 private String id;

 private long creationTime = System.currentTimeMillis();;

 private long thisAccessTime = creationTime;
 private long lastAccessed = creationTime;

 private int inactiveInterval = -1;

 ServerSession(String id) {

 this.id = id;
 }

 public String getId() {
 return id;

 }

 public long getCreationTime() {
 return creationTime;

 }

 public long getLastAccessedTime() {

 return lastAccessed;
 }

 public ApplicationSession getApplicationSession(Context context,
 boolean create) {

 ApplicationSession appSession =
 (ApplicationSession)appSessions.get(context);

 if (appSession == null && create) {

 // XXX
 // sync to ensure valid?

 appSession = new ApplicationSession(id, this, context);
 appSessions.put(context, appSession);

 }

 // XXX

 // make sure that we haven't gone over the end of our
 // inactive interval -- if so, invalidate and create

 // a new appSession

 return appSession;
 }

 void removeApplicationSession(Context context) {

 appSessions.remove(context);
 }

 /**
 * Called by context when request comes in so that accesses and

 * inactivities can be dealt with accordingly.
 */

 void accessed() {
 // set last accessed to thisAccessTime as it will be left over

 // from the previous access

 lastAccessed = thisAccessTime;

 thisAccessTime = System.currentTimeMillis();

 }

 void validate()

Software Control Systems

Crosses Interdisciplinary Boundaries

Why is CPS Hard?

•  Disciplinary boundaries need to be realigned
•  New fundamentals need to be created

•  New technologies and tools need to be developed
•  Education need to be restructured

National Science Foundation

19

Software: The Great Enabler

§  Good news: anything is possible in software!
§  Bad news: anything is possible in software!

§  It is the software that affects system
complexity and also cost.
§  Software development stands for 70-80% of the

overall development cost for some embedded
systems.

20

Ariane 5 Explosion

“It took the European Space Agency 10 years and $7 billion to produce Ariane
5. All it took to explode that rocket less than a minute into its maiden voyage
last June, scattering fiery rubble across the mangrove swamps of French
Guiana, was a small computer program trying to stuff a 64-bit number into a
16-bit space”

 A bug and a crash, J. Gleick, New York Times, Dec 1996

21

Prius Brake Problems Blamed on Software
Glitches

“Toyota officials described the problem as a "disconnect" in the vehicle's
complex anti-lock brake system (ABS) that causes less than a one-second lag.
With the delay, a vehicle going 60 mph will have traveled nearly another 90
feet before the brakes begin to take hold”

 CNN Feb 4, 2010

22

Auto Recalls

23

Software: The Achilles’ Heel

Software everywhere means bugs everywhere
 2002 study by NIST:

 Software bugs cost US economy $60 billion annually (0.6% of GDP)

Lack of trust in software as technology barrier

 Would you use an autonomous software-controlled round-the-clock
monitoring and drug-delivery device?

Grand challenge:
 Technology for designing dependable cyber-physical systems

24

Let’s Design a Cruise Controller

What’s the goal of a cruise controller?

Automatically adjust the speed of the car so that it matches the speed
desired by the driver

25

CruiseController

Block Diagrams of High-Level Design

How does this component interact with the rest of the world ?

26

CruiseController

Interfaces for Components: Inputs and Outputs

Driver interacts with the system using 4 buttons:

 Cruise button to turn the cruise on or off

 Pause button to suspend/restart its operation

 Inc and Dec buttons to increment or decrement desired speed

cruise

pause

inc/dec

Driver

27

CruiseController

Interfaces for Components: Inputs and Outputs

What other information does the cruise-controller need ?

 And who supplies it?

Tachometer
speed

cruise

pause

inc/dec

Driver

28

Interfaces for Components: Inputs and Outputs

What should be the outputs of the CruiseController?

And who needs these outputs?

CruiseController Tachometer
speed

cruise

pause

inc/dec

Driver

29

CruiseController Driver

cruise

pause

inc/dec

Tachometer
speed

Display

speed DesiredSpeed

Throttle

Force

30

CruiseController

cruise

pause

inc/dec

speed

speed DesiredSpeed

Force

Compositional Design

How to break up the computation of the cruise controller into subtasks?

31

cruise

pause

inc/dec

speed

speed DesiredSpeed

Force

Decomposing the Cruise Controller

SetSpeed

ControlSpeed

32

cruise

pause

inc/dec

speed

DesiredSpeed

Designing SetSpeed Component

SetSpeed

Goal: Compute the desired cruising speed in response to

 the commands from the driver

33

Designing SetSpeed: State Machines

OFF ON

PAUSED

cruise: r := speed

cruise

pause
pause

pause,
inc, dec

cruise

inc: r := r+1

 dec: r := r-1

 DesiredSpeed corresponds
to the variable r

inc, dec

34

 DesiredSpeed
speed

Force

Designing ControlSpeed Component

ControlSpeed

Goal: Determine the force to be applied to throttle so that speed
becomes equal to DesiredSpeed

35

 DesiredSpeed
speed

Force

Capturing Requirements

ControlSpeed

Requirements: Mathematically precise description of what a system is
supposed to do.

Writing requirements is key to ensuring reliability of systems

Requirement 1: Actual speed eventually converges to desired speed

Requirement 2: Speed of the car stays “stable”

36

A bit of Physics: Modeling a car

Velocity v

Force F

Friction k v

Newton’s law of motion gives
 F – kv – mg sin θ = m a

Angle θ

Weight mg

37

 DesiredSpeed r

Force F

ControlSpeed Component

ControlSpeed

Control Theory: Mathematical techniques to compute force (F) as a
function of velocity (v) and desired speed (r)

Car

 Angle θ of the road with
horizontal (disturbance)

 Velocity v

 F – kv – mg sin θ = m a

 F = KP (v – r)

38

 r

Force F

Does our controller work ?

ControlSpeed

Car

 θ

 Velocity v

 F – kv – mg sin θ = m a

 F = KP (v – r)

Verification Tools: Allow you to check if system model indeed works as
expected, that is, satisfies requirements

39

Model-based design

Design using high-level block diagrams and state machines gets
automatically compiled into low-level code !

Models not only of system being designed, but also of its environment

40

Simulation, Testing, and Verification

Model/Program

Requirement

yes/proof

no/bug
Verifier

Program testing can be used to show the presence
 of bugs, but never their absence!

Edsger W. Dijkstra

41

