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CPS: Computing Perspective 
•  Two types of computing systems 

–  Desktops, servers, PCs, and 
notebooks 

–  Embedded 
•  The next frontier 

–  Mainframe computing (60’s-70’s) 
•  Large computers to execute big 

data processing applications 
–  Desktop computing & Internet 

(80’s-90’s) 
•  One computer at every desk to do 

business/personal activities 
–  Embedded computing (21st 

Century) 
•  “Invisible” part of the 

environment 
•  Transformation of industry 

•  Number of microprocessor 
units per year 

–  Millions in desktops 
–  Billions in embedded processors 

•  Applications: 
–  Automotive Systems 

•  Light and heavy automobiles, 
trucks, buses 

–  Aerospace Systems 
•  Airplanes, space systems 

–  Consumer electronics 
•  Mobile phones, office electronics, 

digital appliances 
–  Health/Medical Equipment 

•  Patient monitoring, MRI, infusion 
pumps, artificial organs   

–  Industrial Automation 
•  Supervisory Control and Data 

Acquisition (SCADA) systems for 
chemical and power plants 

•  Manufacturing systems 
–  Defense  

•  Source of superiority in all 
weapon systems 



CPS: Systems Perspective 
Sectors Opportunities 
Transportation Aircraft that fly faster and further on 

less energy. Air traffic control 
systems that make more efficient 
use of airspace. 
Automobiles that are more capable 
and safer but use less energy.   

Defense More capable defense systems; 
defense systems that make better use 
of networked fleets of autonomous 
vehicles. 

 
Energy and 
Industrial 
Automation 

New and renewable energy sources. 
Homes, office, buildings and 
vehicles that are more energy 
efficient and cheaper to operate.  

 
 



What are Cyber-Physical Systems? 
Deeply integrating computation, communication, and control 

into physical systems 
 

Transportation 
• Faster and safer vehicles (airplanes, cars, 
etc) 

• Improved use of airspace and roadways 
• Energy efficiency 
• Manned and un-manned 

Energy and Industrial 
Automation 
• Homes and offices that are more 
energy efficient and cheaper to operate 

• Distributed micro-generation for the 
grid 

Healthcare and 
Biomedical 
• Increased use of effective in-home care 
• More capable devices for diagnosis 
• New internal and external prosthetics 

Critical Infrastructure 
• More reliable power grid 
• Highways that allow denser traffic with 
increased safety 

•  Pervasive computation, sensing and control 
•  Networked at multi- and extreme scales 
•  Dynamically reorganizing/reconfiguring 
•  High degrees of automation 
•  Dependable operation with potential 

requirements for high assurance of 
reliability, safety, security and usability 

•  With / without human in on-the-loop 
•  Conventional and unconventional 

substrates / platforms 
•  Ranges from the very small – BioCPS 

(DNA and Micro-robots) to the large 
(Boeing 787 / Airbus 380 ) to the very large 
(city scale) 

Application Domains Characteristics of 
CPS 
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CPS Definition 

A CPS is a system in which: 
§  information processing and physical processes 

are so tightly integrated that it is not possible to 
identify whether behaviors are the result of 
computations, physical laws, or both working 
together 

§  where functionality and salient system 
characteristics are emerging through the 
interaction of physical and computational objects 



Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS): 
Orchestrating networked computational  

resources with physical systems 

Power 
generation and 

distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Avionics 
Telecommunications 

Factory automation 

Instrumentation 
(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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Top twelve economically  
disruptive technologies (by 2025) 

CPS is a big part of “The 
Future” (according to McKinsey)… 
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CPS Research is Fundamental to 
Smart and Connected Communities 

and Internet of Things 

Smart Homes 
& IoT 
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Transformation of Industries:  
Automotive 

§  Current picture 
§  Largely single-vehicle focus 
§  Integrating safety and fuel economy  (full hybrids, 

regenerative braking, adaptive transmission control, 
stability control) 

§  Safety and convenience “add-ons” (collision 
avoidance radar, complex airbag systems, GPS, …) 

§  Cost of recalls, liability; growing safety culture 
§  Better future? 

§  Multi-vehicle high-capacity cooperative control 
roadway technologies 

§  Vehicular networks 
§  Energy-absorbing “smart materials” for collision 

protection (cooperative crush zones?) 
§  Alternative fuel technologies, “smart skin”  

integrated photovoltaics and energy scavaging, …. 
§  Integrated operation of drivetrain, smart tires, 

active aerodynamic surfaces, … 
§  Safety, security, privacy certification; regulatory 

enforcement 
§  Time-to-market race 

 

Image thanks to  Sushil Birla, GMC 



Example: Toyota autonomous vehicle 
technology roadmap 

Source: Toyota Web site 
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§  National Health Information Network, 
Electronic Patient Record initiative 
§  Medical records at any point of service 
§  Hospital, OR, ICU, …, EMT? 

§  Home care: monitoring and control  
§  Pulse oximeters (oxygen saturation), blood glucose 

monitors, infusion pumps (insulin), accelerometers 
(falling, immobility), wearable networks (gait 
analysis), … 

§  Operating Room of the Future (Goldman) 
§  Closed loop monitoring and control; multiple 

treatment stations, plug and play devices; robotic 
microsurgery (remotely guided?)  

§  System coordination challenge 
§  Progress in bioinformatics:  gene, protein 

expression; systems biology; disease 
dynamics, control mechanisms 

 
Images thanks to  Dr. Julian Goldman, Dr. Fred Pearce 

Transformation of Industries:  
 Health Care and Medicine 
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§  Current picture: 
§  Equipment protection devices trip 

locally, reactively 
§  Cascading failure:  August (US/Canada) 

and October (Europe), 2003 
§  Better future? 

§  Real-time cooperative control of 
protection devices 

§  Or -- self-healing -- (re-)aggregate 
islands of stable bulk power (protection, 
market motives) 

§  Ubiquitous green technologies 
§  Issue: standard operational control 

concerns exhibit wide-area 
characteristics (bulk power stability and 
quality, flow control, fault isolation) 

§  Context:  market (timing?) behavior, 
power routing transactions, regulation 

IT Layer 

Images thanks to  William H. Sanders, Bruce Krogh, and Marija Ilic 

Transformation of Industries:  
 Electric Power Grid 



§  Dreamliner 
§  ~1330 networked 

microprocessors 
§  50% of design cost ($ and 

time) 
§  Correctness of software 

challenge 
§  Cybersecurity (i.e., GPS 

spoofing) 
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Transformation of Industries:  
Manned and Unmanned Aerial Vehicles 

Google, Amazon, and 
Walmart want to deliver 
products to your doorstep 
nearly instantly by using 
drones 
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Transformation of Industries:  
Smart Buildings 



In a few words… 
Cyber-physical systems are smart, complete systems of 
tomorrow; 
 
Cyber-physical systems will enable ubiquitous technologies 
and applications for the future. 

Advances in cyber-physical systems will reshape our world with 
more responsive, secure, and efficient systems that: 

•  Transform the way we live 
•  Drive economic prosperity 
•  Underpin national security 
•  Enhance societal well-being 
•  Users depend on and may bet their life on 
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Long-Term Goal 
§  Transform how we interact with the 

physical world just like the internet 
transformed how we interact with one another. 
§  Transcend space 
§  Control the physical environment remotely 

§  Building CPS that integrate computational and 
physical objects requires new systems science 
foundations.  
§  Fusion of physical and computational sciences 

Produce significant impact on society and national 
competitiveness. 
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package org.apache.tomcat.session; 
 

import org.apache.tomcat.core.*; 
import org.apache.tomcat.util.StringManager; 

import java.io.*; 

import java.net.*; 
import java.util.*; 

import javax.servlet.*; 
import javax.servlet.http.*; 

 
/** 

 * Core implementation of a server session 
 * 

 * @author James Duncan Davidson [duncan@eng.sun.com] 
 * @author James Todd [gonzo@eng.sun.com] 

 */ 
 

public class ServerSession { 
 

    private StringManager sm = 

        StringManager.getManager("org.apache.tomcat.session"); 
    private Hashtable values = new Hashtable(); 

    private Hashtable appSessions = new Hashtable(); 
    private String id; 

    private long creationTime = System.currentTimeMillis();; 

    private long thisAccessTime = creationTime; 
    private long lastAccessed = creationTime; 

    private int inactiveInterval = -1; 
     

    ServerSession(String id) { 

        this.id = id; 
    } 
 

    public String getId() { 
        return id; 

    } 
 

    public long getCreationTime() { 
        return creationTime; 

    } 

 
    public long getLastAccessedTime() { 

        return lastAccessed; 
    } 
     

    public ApplicationSession getApplicationSession(Context context, 
        boolean create) { 

        ApplicationSession appSession = 
            (ApplicationSession)appSessions.get(context); 

 

        if (appSession == null && create) { 
 

            // XXX 
            // sync to ensure valid? 

             

            appSession = new ApplicationSession(id, this, context); 
            appSessions.put(context, appSession); 

        } 
 

        // XXX 

        // make sure that we haven't gone over the end of our 
        // inactive interval -- if so, invalidate and create 

        // a new appSession 
         

        return appSession; 
    } 

     
    void removeApplicationSession(Context context) { 

        appSessions.remove(context); 
    } 
 

    /** 
     * Called by context when request comes in so that accesses and 

     * inactivities can be dealt with accordingly. 
     */ 
 

    void accessed() { 
        // set last accessed to thisAccessTime as it will be left over 

        // from the previous access 
 

        lastAccessed = thisAccessTime; 

        thisAccessTime = System.currentTimeMillis(); 
         

    } 
 

    void validate() 

Software Control Systems 

Crosses Interdisciplinary Boundaries 

Why is CPS Hard?  

•  Disciplinary boundaries need to be realigned 
•  New fundamentals need to be created 

•  New technologies and tools need to be developed 
•  Education need to be restructured 



National Science Foundation 
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Software: The Great Enabler 

§  Good news: anything is possible in software! 
§  Bad news: anything is possible in software! 

§  It is the software that affects system 
complexity and also cost. 
§  Software development stands for 70-80% of the 

overall development cost for some embedded 
systems. 
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Ariane 5 Explosion 

“It took the European Space Agency 10 years and $7 billion to produce Ariane 
5. All it took to explode that rocket less than a minute into its maiden voyage 
last June, scattering fiery rubble across the mangrove swamps of French 
Guiana, was a small computer program trying to stuff a 64-bit number into a 
16-bit space” 

  

 A bug and a crash, J. Gleick, New York Times, Dec 1996 
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Prius Brake Problems Blamed on Software 
Glitches 

“Toyota officials described the problem as a "disconnect" in the vehicle's 
complex anti-lock brake system (ABS) that causes less than a one-second lag. 
With the delay, a vehicle going 60 mph will have traveled nearly another 90 
feet before the brakes begin to take hold” 

 CNN Feb 4, 2010 
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Auto Recalls 
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Software: The Achilles’ Heel 

Software everywhere means bugs everywhere 
 2002 study by NIST:  

 Software bugs cost US economy $60 billion annually (0.6% of GDP) 

  

Lack of trust in software as technology barrier 

 Would you use an autonomous software-controlled round-the-clock 
monitoring and drug-delivery device? 

Grand challenge: 
 Technology for designing dependable cyber-physical systems 
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Let’s Design a Cruise Controller 

What’s the goal of a cruise controller? 

Automatically adjust the speed of the car so that it matches the speed 
desired by the driver  

25 



CruiseController 

Block Diagrams of High-Level Design 

How does this component interact with the rest of the world ? 
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CruiseController 

Interfaces for Components: Inputs and Outputs 

Driver interacts with the system using 4 buttons: 

 Cruise button to turn the cruise on or off 

 Pause button to suspend/restart its operation 

 Inc and Dec buttons to increment or decrement desired speed 

cruise 

pause 

inc/dec 

Driver 
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CruiseController 

Interfaces for Components: Inputs and Outputs 

What other information does the cruise-controller need ? 

 And who supplies it? 

Tachometer 
speed 

cruise 

pause 

inc/dec 

Driver 
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Interfaces for Components: Inputs and Outputs 

What should be the outputs of the CruiseController? 

And who needs these outputs? 

CruiseController Tachometer 
speed 

cruise 

pause 

inc/dec 

Driver 
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CruiseController Driver 

cruise 

pause 

inc/dec 

Tachometer 
speed 

Display  

speed DesiredSpeed 

Throttle  

Force 
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CruiseController 

cruise 

pause 

inc/dec 

speed 

speed DesiredSpeed 

Force 

Compositional Design 

How to break up the computation of the cruise controller into subtasks? 
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cruise 

pause 

inc/dec 

speed 

speed DesiredSpeed 

Force 

Decomposing the Cruise Controller 

SetSpeed 

ControlSpeed 
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cruise 

pause 

inc/dec 

speed 

DesiredSpeed 

Designing SetSpeed Component 

SetSpeed 

Goal: Compute the desired cruising speed in response to 

    the commands from the driver 
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Designing SetSpeed: State Machines 

OFF ON 

PAUSED 

cruise: r := speed 

cruise 

pause 
pause 

pause, 
inc, dec 

cruise 

inc:  r := r+1 

 dec: r := r-1 

 DesiredSpeed corresponds 
to the variable r 

inc, dec 
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 DesiredSpeed 
speed 

Force 

Designing ControlSpeed Component 

ControlSpeed 

Goal: Determine the force to be applied to throttle so that speed 
becomes equal to DesiredSpeed 
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 DesiredSpeed 
speed 

Force 

Capturing Requirements 

ControlSpeed 

Requirements: Mathematically precise description of what a system is 
supposed to do.  

Writing requirements is key to ensuring reliability of systems 

Requirement 1: Actual speed eventually converges to desired speed 

Requirement 2: Speed of the car stays “stable” 
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A bit of Physics: Modeling a car 

Velocity  v 

Force F 

Friction k v 

Newton’s law of motion gives  
 F – kv – mg sin θ = m a 

Angle θ

Weight mg 
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 DesiredSpeed r 

Force F 

ControlSpeed Component 

ControlSpeed 

Control Theory: Mathematical techniques to compute force (F) as a 
function of velocity (v) and desired speed (r) 

Car 

 Angle θ of the road with 
horizontal (disturbance) 

 Velocity v 

   F – kv – mg sin θ = m a 

 F  = KP ( v – r) 
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 r 

Force F 

Does our controller work ? 

ControlSpeed 

Car 

 θ  

 Velocity v 

   F – kv – mg sin θ = m a 

 F  = KP ( v – r) 

Verification Tools: Allow you to check if system model indeed works as 
expected, that is, satisfies requirements 
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Model-based design 

Design using high-level block diagrams and state machines gets 
automatically compiled into low-level code !  

Models not only of system being designed, but also of its environment  
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Simulation, Testing, and Verification 

Model/Program 

Requirement 

yes/proof 

no/bug 
Verifier 

Program testing can be used to show the presence 
 of bugs, but never their absence! 

 
Edsger W. Dijkstra 
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