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Overall Research Strategy Phase I: Sources of Intuitiveness

.. Cyber System (ie. simulated interaction environments) - _Cyber + Physical System  S@ansor Integration to Measure Intuitiveness

Z Phase | Phase If ' ' To measure user performance and physiological response, we

- design task measure user implement intuitive :

| gfof known diffculty | generae _performance anc umanin-heloop contrel | 1 are integrating sensors such as IMUs with electromyography,

i Iterate difficulty gse_r-_specific svitﬁsizsokgslcoi Jii?,oor:;s validate | i . . .

| e intitveness) | hutveness itHoulty . skin galvanic response, and heart rate measurements (Shimmer
-\ orveoogea Mgl nfer intitivensss, select  Sensing) and an EEG headset (Biopac) with custom C++ code to
| response optimal control strategy :

Designing a Task of Known Difficulty Fitts’ Law
IS @ widely accepted psychomotor relationship between

and width (W). We will conduct a human user study (UTD

IRB #14-57) to build models of intuitiveness using known | k.
d|fﬁcu|ty and measured user response. Student Lead: Ziheng Wang Preliminary work verifies that targets further apart lead to more trajectory error
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- control a haptlc device, using the Robot Operatmg System (ROS).
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and longer completion time. Ongoing work is to ensure the experiment is
sufficiently long to capture physiological changes.
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Phase Il: Classifying Intuitiveness for a Task of Unknown Difficulty

Steerable need!es are able to reach

targets while avoiding obstacles in tissue via \We identified the four most relevant muscles
curved paths. Needles steer due asymmetric for teleoperated needle steering: deltoid, bicep

tip forces
during

Insertion
and rotation.

Teleoperation of steerable needles
allows the surgeon to stay in the needle

control loop; however, an effective, intuitive (GSR), and EEG data collection. Student Lead:

Muscle Selection and Calibration
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Obtaining Metrics from EMG Data
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brachii, latissimus dorsi, and pronator teres.
Data is normalized with maximum voluntary
contractions. We are currently analyzing data
from a preliminary experiment with six
subjects performing 3D teleoperated needle
steering with EMG, galvanic skin response
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Long-Term Objective: Evaluate
intuitiveness for steering needles in joint
space (i.e., insertion and spin inputs) and
Cartesian space (i.e., 3D needle tip control).

Short-Term Objective: Determine best-
practices for obtaining physiological
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parameters during needle steering tasks ﬁ :
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