IskiOS: Lightweight Defense Against Kernel-Level Code-Reuse Attacks

Spyridoula Gravani, Mohammad Hedayati, John Criswell, Michael L. Scott

Department of Computer Science, University of Rochester

Motivation

Commodity operating systems are the most trusted component in the software stack of modern computing platforms, yet, they are vulnerable to code-reuse attacks.

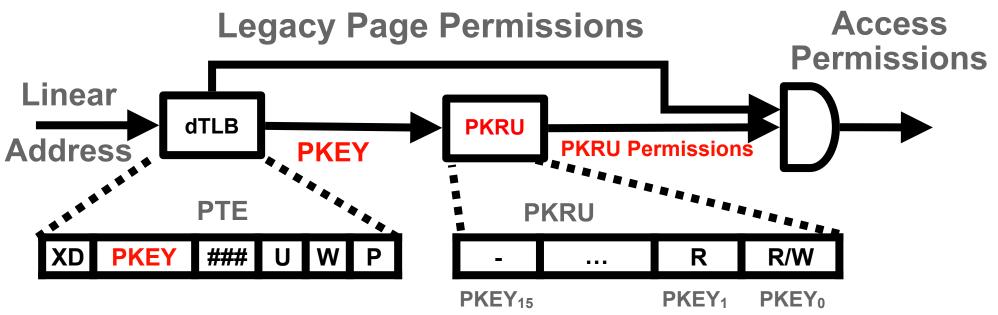
IskiOS

Shadow Call Stack Write-protected **M**Race-free **Efficient**

Frame 2

Return Address 2

Frame 1


Return Address 1

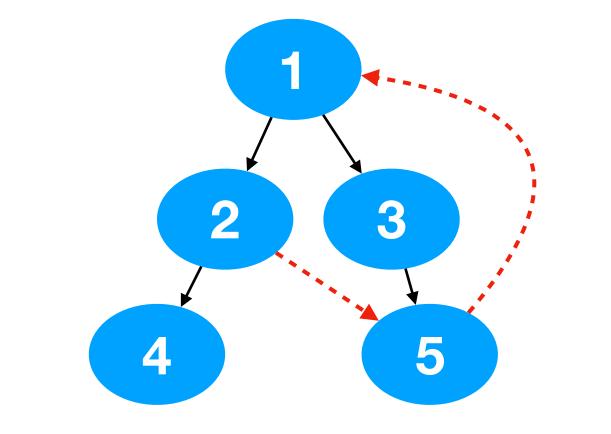
Design

Intel Protection Keys for Userspace (PKU)

•**PKRU:** 32-bit user-accessible register

•wrpkru/rdpkru instructions • Up to **16 protection domains** within a singe address space • Applies to PTEs with **U/S bit set** (i.e., user memory only)

Code-reuse Attack


•Goal: control program behavior

• Typically:

-Memory-safety error exploitation (e.g., bufferoverflow)

-Corruption of returnaddress of a function call on stack

- Control-flow redirection to desired code sequence

Prevents all *return*-**Return Address 2 Copy** based Return Address 1 Copy code-reuse attacks. **B** Prevents Direct Disclosure of **Code Layout eXecute-Only Memory** (XOM) Code (X) Code cannot be read/ written ☑No layout re-Data (R/W) arrangement **M** Deployed diversification entropy Code (X) is maintained **Prevents all** *just-in*time attacks via direct Data (R/W) reads.

Kernel Page Table Isolation (KF Software-only mitigation for Meltdown attack Separate page tables for user/ke isolation •U/S bit redundant

•Key idea: mark *all* memory as (U/S clear) and rely solely on KF for isolation

 Enables Protection Keys for Kernel (PKK)

Evaluation

Benchmark vanilla	pti	pti+xom	pti+xom+cph	pti+xom+cph+ss-lfo-swo

PTI)	Kernel View	User View
kernel	Kernel Mappings	Unmapped
user PTI	<section-header><section-header></section-header></section-header>	User Mappings

Insufficient Kernel Defenses

 Mostly label-based Controlflow Integrity (CFI) approaches

-Over-permissive controlflow policies due to static analysis imprecision and incompleteness -Lack of return-address

protection

Trap Padding foo() Function entries and callq bar callsites are followed/ preceded by random number of traps Pointers in readable memory do not leak information about code layout

Mitigates *just-in-time* attacks via leaked code pointers.

Denemiark	vaiiiia		րո	ритлош	ритхоштери	pu+x0m+cpn+ss-no-sw0
Apache	30131.13	req/s	1.99%	7.93%	31.34%	58.58%
Kbuild	56.93	sec	1.48%	$\sim 0\%$	2.89%	7.20%
GnuPG	15.30	sec	$\sim 0\%$	$\sim 0\%$	1.18%	3.91%
OpenSSL	3814.23	sign/s	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$
PyBench	1789	msec	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$
PHPBench	477859	(score)	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$
PostMark	5210	trans/s	8.91%	8.29%	19.63%	56.90%
SQLite	549.33	sec	$3.87\%^{*}$	$10.45\%^{*}$	5.66%	3.03%
Redis	2.16M	gets/s	4.39%	4.62%	6.19%	20.72%
Nginx	34193.45	req/s	7.28%	9.33%	28.70%	56.09%
Memcached	106973.37	gets/s	9.72%	7.33%	19.60%	49.97%
Geomean			0.92%	0.83%	1.58%	3.92%

* Indicates that the relative standard deviation in performance among test runs is between 3.5% and 12.8%.

TABLE II: IskiOS runtime overhead (% over vanilla Linux) on the Phoronix Test Suite.

vanilla	pti+xom		pti+xom+cph		pti+xom+cph+ss	
22.55 MB	$\sim 22.55 MB$	$\sim 0\%$	88.04 MB	292%	90.02 MB	299%

TABLE III: IskiOS code size for different configurations and overhead over vanilla Linux.

This work was supported in part by NSF grants CCF-1717712, CCF-1422649, and CNS-1618213, and by a Google Faculty Research award.

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting)

foo()

....

jmpq 1f

.....

jmpq 2f

callq bar

jmpq 3f

.....

....

October 28-29, 2019 | Alexandria, Virginia