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Abstract 

Purpose: 

When vasospasm is detected after aneurysmal subarachnoid hemorrhage, it is treated with 

hypertensive or endovascular therapy. Current classification methods are resource-

intensive, relying on specialty-trained professionals (nursing exams, transcranial 

dopplers, perfusion imaging). Passively obtained variables such as cerebrospinal fluid 

drainage volumes, sodium, glucose, blood pressure, and heart rate, have not been used to 

predict vasospasm. We hypothesize that these features may yield as much information as 

resource-intensive features to classify vasospasm. 

Materials and Methods: 

We studied 81 subarachnoid hemorrhage patients presenting within two days of onset. 

Vasospasm class (VSP) was defined by angiographic vasospasm warranting endovascular 

treatment. Naïve Bayes (NB) and logistic regression (LR) classifiers were trained on 

selected variable feature sets from the first three days of illness. Performance of trained 

classifiers was evaluated using area under the receiver operator characteristic curve 

(AUCclassifier) and F-measure (Fclassifier). Ablation analysis determined incremental utility 

of each variable and subsets. 

Results: 
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43.2% developed VSP. NB classifier trained on all passively obtained features (AUCNB 

0.708 and FNB 0.636) outperformed NB classifier trained on resource-intensive features 

(AUCNB 0.501 and FNB 0.349). 

Conclusions:  

Data-driven analysis of passively obtained clinical data predicted VSP better than current 

targeted resource-intensive monitoring techniques after aneurysmal subarachnoid 

hemorrhage. Automated classification of VSP may be possible.  
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Introduction  

Patients afflicted with aneurysmal subarachnoid hemorrhage (aSAH) are 

monitored in the intensive care unit for 10-14 days in order to monitor for neurologic and 

cardiac adverse sequelae. Delayed cerebral ischemia is the adverse event that most 

contributes to poor outcome, and has proven to have incomplete correlation with 

vasospasm (1). However, in the management of aSAH patients after the aneurysm is 

secured, clinicians are on alert for actionable events such as symptomatic angiographic 

vasospasm (2), which occurs most frequently 7 to 10 days after aneurysm rupture. When 

symptomatic vasospasm is detected in patients, they are treated with hypertensive therapy 

and in capable centers, localized intra-arterial delivery of vasodilators, angioplasty, or 

intra-aortic balloon pumps (2,3). 

Frequent neurologic exams by trained nurses and healthcare professionals are 

vital for the detection of clinically significant vasospasm. Many centers will be alerted to 

preclinical vasospasm by daily transcranial doppler (TCD) and to delayed cerebral 

ischemia by perfusion scans (2). TCD is useful for detecting angiographic VSP in 

proximal segments of the intracranial arteries, especially the middle cerebral artery and 

basilar artery (4). TCD can be highly specific for angiographic vasospasm, but weakly 

sensitive (58.6%) (5). A few advanced centers additionally monitor for early (preclinical) 

ischemia using continuous electroencephalogram (cEEG) (6,7), beyond current 

guidelines. The trended information from these tests enable clinicians to continuously 

assess the likely classification of aSAH patients into categories of “in vasospasm” or “not 
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in vasospasm.” The more days into the high-risk post-rupture period with or without 

suggestion of vasospasm, the more certain this classification becomes. 

This method of vasospasm classification is heavily reliant on specialty-specific 

trained healthcare professionals. The sensitivity of neurologic exams is dependent on the 

expertise of the examiner. Furthermore, TCD are resource-intensive, dependent on the 

availability and workflow of skilled technicians; they are maximally available on a once 

daily basis, during normal workday hours. 

Clinical features that are routinely monitored in aSAH patients but not 

traditionally used to detect symptomatic vasospasm include cerebrospinal fluid (CSF) 

drainage volumes, sodium values, intracranial pressures (ICP), blood pressures, and heart 

rates. We hypothesize that these passively obtained features hold as much information as 

traditional resource-intensive features (TCD or exam) to aid clinicians in classifying 

patients for symptomatic vasospasm.  

Materials and Methods   

We studied 89 high-grade aSAH patients admitted to the Neurocritical Care Unit 

at an academic medical center over an 11 year period (2001 to 2011). Approval for this 

study was obtained from the local Institutional Review Board.  

Clinical Management of aSAH patients 

Patients were managed according to a standard protocol (8, 9). An 

extraventricular drain was placed in all patients with Glasgow coma scale (GCS) <8, and 

in all patients with symptomatic hydrocephalus. Brain tissue oxygen (PbtO2) monitors 
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and parenchymal intracranial pressure (ICP) monitors were placed if the aSAH patient 

had a Fisher scale 3 or 4 (localized clots and/or vertical layers of blood 1 mm or greater 

in thickness or intracerebral or intraventricular clots) or GCS < 8. Goal PbtO2 was >20 

and goal ICP was < 20. Arterial lines were placed in all patients, and systolic blood 

pressure (SBP) was maintained within 10% of baseline SBP if known, and otherwise 

between 120-160 with as little fluctuation as possible. Once the aneurysm was secured, 

SBP parameters were liberalized to 100-200 mm Hg (except for patients who underwent 

craniotomy, whose SBP were maintained < 160 mm Hg for 24 hours to minimize risk of 

postoperative bleeding). Hypertension was not treated unless SBP > 210 mm Hg. 

Nimodipine was administered enterally for 21 days. If SBP was >160 mm Hg, 

intravenous (IV) antihypertensive regimen was initiated (nicardipine or labetalol), while 

optimizing sedation and analgesia. Cerebral perfusion pressure (CPP) was maintained at 

> 60 mm Hg (this goal took precedence over SBP goal). Frank hypotension was avoided, 

using phenylephrine. A transthoracic echocardiogram was obtained if there was 

hypotension, suboptimal response to phenylephrine, ischemia or ST changes on ECG, or 

initial abnormal cardiac enzymes. If the ejection fraction was reduced or significant 

bradycardia existed, inotropic agents were used. A triple lumen venous catheter was 

placed in all patients, and euvolemia was maintained with a goal central venous pressure 

(CVP) of 6-12 mm Hg. Isotonic IV fluid was used, avoiding hypotonic IV fluid. Sodium 

was maintained within normal range of 133 to 143 mmol/L. Target blood sugar was 90-

180 from 2001 to 2009, then 90-130 from 2009 to 2010, then 90-150 from 2010 to 2011. 

Seizure prophylaxis was given for 7 days after securing aneurysm. Statins, if present, 



 

 7 

were not discontinued upon admission, and otherwise were started. Strict normothermia 

was maintained. 

Vasospasm detection and management 

Early detection and prevention of vasospasm and its consequences were a major 

focus of ICU care. Detection involved serial neurological exams and daily TCD studies 

including extracranial ICA velocity (for Lindegaard ratio). Patients were monitored every 

1-3 hours for increased headache or clinical deterioration (focal neurologic change). 

Other diagnostic tests such as CT perfusion, Xenon CT, MR perfusion, and cEEG were 

available and used to help establish the presence of ischemia. Local practice for the 

optimal management of vasospasm included maintaining euvolemia, inducing 

hypertension and/or optimizing cardiac output. Available endovascular therapy included 

intra-arterial vasodilators (nicardipine) and balloon angioplasty. 

Patient selection and Outcome definition 

Inclusion criteria were aSAH patients with Fisher Grade 3 or 4 whose aneurysms 

were secured. Exclusion criteria were delayed presentation greater than 48 hours and 

early vasospasm (angiographically defined vasospasm that was treated with IA 

vasodilator or angioplasty during first 2 days of illness. The cohort of aSAH patients was 

classified into 2 groups (+VSP or -VSP) based on the occurrence of angiographic 

vasospasm treated with IA vasodilators (inclusive of all treatment with angioplasty). 

Patients without angiogram performed were included in the -VSP group. 

TCD, Fisher grade, and nursing examination data were abstracted from the 

hospital records. Clinical data that are routinely monitored in ICU patients but not 
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traditionally used to detect symptomatic vasospasm were abstracted from the hospital 

record. These features included CSF drainage volumes, blood pressures, heart rates, ICP, 

glucose levels, and sodium levels.  

Statistical methods:  

Feature selection 

Treatment (hypertensive therapy) often begins immediately before angiogram in 

suspected VSP cases. Because PBD 0-2 is a window of time before patient physiology 

may be altered through treatment, we focused on results utilizing only the first three days 

worth of data. Each clinical variable (CSF drainage volume, blood pressure, heart rate, 

ICP, glucose level, and sodium level) was tested for normality using both a Shapiro-Wilk 

test and visually, using a QQ plot. All features were normally distributed. Summary 

statistics (mean, median, minimum, maximum, standard deviation, and coefficient of 

variation) were calculated for each variable. Each statistic was calculated over each of the 

first three individual days of illness, as well as over the cumulative first three days of 

illness.  

Using Student’s t-tests, candidate features with a statistically significant 

difference (p<0.05) between the two VSP groups were selected for the final feature set. 

Classifiers were then constructed using this feature set.  

Constructing the Classifiers 

A naïve Bayes (NB) classifier and a logistic regression (LR) classifier were 

trained using the selected feature set. An NB classifier constructs a joint probability 
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distribution by “naively” assuming all features are independent, and applying Bayes’ 

rule: 

 

where G is the group (+VSP or -VSP) and fi are the features.  

This allowed us to learn a probability distribution over each of the groups, which 

could be used to calculate the probability a given new patient belongs to +VSP. An LR 

classifier, in contrast, attempts to fit a linear function over the feature values to the data 

by learning weights on each of the features, with a soft logistic function as the threshold 

for output:  

 

where fi are the features, and wi are weights learned from the training data.  

We used 10-fold cross validation to prevent over-fitting. In 10-fold cross 

validation, the data is randomly divided into 10 training subgroups of equal size. The first 

subgroup is selected and held in reserve while the remaining nine are used to train the 

classifier. The selected subgroup is then used to evaluate the classifier’s performance. 

This process is repeated selecting each of the subgroups, and the results averaged across 

all runs. The Weka machine learning library (10) was used to construct and validate the 

classifiers.  

NB and LR were chosen for use as they form a generative/discriminative 

classifier pair (that is, NB maximizes the total joint log-likelihood over the data, while 
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LR maximizes the total conditional likelihood over the same parametric model) (11), 

because they are easy to understand and are known to generalize relatively well. While 

patient vital signs are not expected to be independent, it has been shown that NB can 

perform optimally if dependencies distribute evenly in classes, thus cancelling each other 

out (12).   

Evaluating Performance of the Classifiers 

The performance of the trained classifiers was evaluated using two measures: area 

under the receiver operator characteristic (ROC) curve and the F-measure. The ROC is a 

plot that illustrates the performance of a binary classifier by varying its discrimination 

threshold and plotting the fraction of true positives over positive classifier results, versus 

the fraction of false positives over negative classifier results. The area under this curve, or 

c-statistic, is equal to the probability that a classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative one.   

The F-measure is the harmonic mean of a classifier’s recall and precision. Recall 

is the percentage of positive classifier results among the true positives: 

 

It is equivalent to sensitivity. Precision is the percentage of true positives among the 

positive classifier results: 

 

It is equivalent to positive predictive value. The F-measure is calculated as: 
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Ablation Analysis 

An ablation analysis was performed to determine the incremental value of each 

clinical variable in the model. Ablation analysis is a comparison of model performance 

when different subsets of features are included while training classifiers. Each of the 

relevant subsets of features was used individually to train both classifiers, and cross-

validation was used to evaluate their performance with the metrics described above. For 

example, the classifiers were trained and tested using only features derived from TCD 

data. Then, the classifiers were trained and tested using only features derived from 

glucose values, and so on for each set of features described.  

Results 

89 patients with aSAH were examined; eight were excluded due to early 

vasospasm or low fisher grade. Of the remaining 81 patients, 35 (43.2%) were in the 

+VSP group. Patients were well-matched for clinical features except for age (mean age of 

+VSP group 56.4 (SD 14.4) vs –VSP group 50.8 (SD 9.3). Other clinical features 

examined were sex, tobacco use, clinical grade of SAH, and location of ruptured 

aneurysm. A table of patient characteristics is included in the electronic supplement 

(Table E1). 

Post bleed day (PBD) 0 was defined as ictal day (day of rupture). Mean time of 

first angiographically defined VSP was PBD 6.02; range was PBD 2.43-12.72. 63 



 

 12 

patients had 75 surveillance angiograms during PBD 0-2, to verify occlusion of 

aneurysm. None of these surveillance angiograms demonstrated +VSP. 

In total, seven clinical variables were analyzed, including CSF output, BP, HR, 

ICP (measured parenchymally or extraventricularly), glucose value, and sodium value. A 

list showing average number of measurements per clinical variable per patient is included 

in the electronic supplement (Table E2). Summary statistics were performed; several 

features were deemed statistically significant (p<0.05). Results of the t-tests on the 

extracted summary statistics can be seen in Table 1.  

Ablation analysis evaluated predictive performance of the summary statistics 

generated by each physiologic feature. These results can be found in Table 2. Several of 

the automated features, when used in isolation, produced classifiers which predicted VSP 

better than traditional measures. For example, a classifier trained on features derived 

from glucose values achieved an AUCNB of 0.59 and an FNB of 0.526. A classifier trained 

only on MAP achieved an AUCLR of 0.526 and an FLR of 0.645. More traditional 

measures, such as TCDs (AUCNB 0.414, FNB 0.29) and Fisher/Hunt Hess scores (AUCLR 

0.534, FLR 0.235) did not perform as well (the combined models outperformed either of 

the two scores used in isolation). Exam scores (AUCNB 0.595, FNB 0.393) performed 

better.  

The final ablation analysis considered larger subsets of features. An NB classifier 

trained on the automated feature set (CSF, MAP, HR, ICP, and glucose) achieved an 

AUC of 0.708 and an F-measure of 0.636, outperforming both an NB classifier built on 
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the traditional feature subset (AUC 0.501, F-measure 0.349) and an NB classifier built on 

all the features (combined traditional and automated) (AUC 0.625, F-measure 0.484).  

Discussion  

We have shown that an NB classifier using automated features of existing ICU 

data has the potential to classify VSP at least as well as targeted resource-heavy 

monitoring techniques after aSAH. It is important to note that the predictive performance 

of machine learning models built on physiologic feature summary statistics does not 

indicate anything about underlying causality or mechanism. Such models, however, may 

be useful as early warning or decision support systems, analyzing and integrating 

information in real-time to provide useful, targeted alerts to clinicians.  

The advantages of an automated data-driven process in any domain are increased 

consistency and reduced human labor. In the healthcare domain, automation in the form 

of clinical decision support systems has the potential to allow early intervention and 

standardize quality of care while reducing clinicians’ cognitive burden and preoccupation 

with algorithmic tasks, with the goal of improving outcome for patients. The methods we 

have used are not complex, and yet are not enabled by the current IT environment of 

most ICUs.  

In our goal to identify opportunities for early decision support, we are limited in 

that this was a retrospective data set. Inherent in all retrospective data sets are possible 

confounding features that are not recorded. We attempted to mitigate the effect of these 

confounders by focusing our analysis around a specific cohort (high-grade aSAH 

patients). Also, our chosen “gold standard” (treated angiographic vasospasm) may be a 
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late marker for VSP, not taking into account early undocumented clinical suspicion. To 

explore the utility of our classifier further, we are now planning a study to compare its 

performance against prospectively recorded cognitive assessments and clinical decision 

making, while considering possible sources of confounding.  
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Table 1: T-test results. All summary statistics were calculated over one-day 

windows (PBD 0, PBD 1, PBD 2) and over a three-day window (PBD 0-2). Only 

statistically significant (p < 0.05) features are shown. Wilcoxon Rank-Sum tests are 

used instead of t-tests when comparing medians.  

 

Feature 
Window 
(PBD) 

No VSP 
(Mean) 

VSP 
(Mean) p value CI  

Glucose Average 0-2 165.934 135.764 0.001 13.4-46.9 

Glucose Average 1 166.823 141.532 0.012 5.8-44.7 

Glucose Average 2 160.53 128.288 0.002 12.8-51.6 

Glucose Max 0-2 220.41 185.231 0.03 3.5-66.9 

Glucose Max 2 193.059 144.846 0.001 19.5-76.9 

Glucose Median 0-2     0.001 11-46.5 

Glucose Median 1     0.033 2-49 

Glucose Median 2     0.013 5-43.5 

Glucose Min 1 140.556 115.3 0.012 5.9-44.6 

Glucose Min 2 134.353 114.538 0.035 1.5-38.2 

HR CoeffVar 0 0.105 0.065 0.048 0.001-0.081 

HR CoeffVar 0-2 0.141 0.091 0.006 0.016-0.085 

HR CoeffVar 1 0.126 0.082 0.044 0.001-0.086 

HR Min 0-2 58.394 69.571 0.038 -21.7-(-0.7) 

HR StDev 0 9.161 4.761 0.024 0.67-8.13 

HR StDev 0-2 11.355 7.272 0.006 1.29-6.88 

ICP (Parenchymal) Max 1 34.632 18.4 0.044 0.5-32.0 

ICP (Ventricle) Average 1 12.853 5.547 0.039 0.5-14.1 

ICP (Ventricle) Median 1     0.044 0.00001-17 

ICP (Ventricle) StDev 0-2 7.521 3.982 0.027 0.4-6.6 

ICP (Ventricle) StDev 1 6.523 3.211 0.028 0.5-6.1 

MAP Max 1 122.874 107.524 0.018 2.99-27.72 

Sodium Average 1 142.972 139.4 0.034 0.32-6.82 

Sodium CoeffVar 0-2 0.016 0.009 0.048 0.00007-0.013 

Sodium Max 0-2 146.469 143.222 0.039 0.17-6.32 

Sodium Max 1 144.321 140.2 0.03 0.46-7.78 

Sodium StDev 0-2 2.347 1.335 0.037 0.065-1.959 

 
 

Table 1



Table 2: Ablation Analysis. NB=naive Bayes classifier. LR=logistic regression 

classifier. AUC=area under the receiver operator curve. F=F-measure; weighted 

combination of accuracy and precision. All Automated Features=statistically 

significant summary features of CSF, MAP, HR, ICP, and Glucose. All Traditional 

Features=statistically significant summary features of TCDs, Exam Scores, and 

Fisher/Hunt Hess Grade.  

 
Variable  AUCNB  FNB  AUCLR  FLR 

TCDs 0.414 0.29 0.3 0.232 

Exam Scores 0.595 0.393 0.336 0.405 

Fisher & Hunt Hess Grades 0.499 0.163 0.534 0.235 

CSF 0.475 0.259 0.538 0.353 

MAP 0.647 0.182 0.526 0.645 

HR 0.698 0.353 0.536 0.4 

ICP 0.501 0.182 0.588 0.682 

Glucose 0.59 0.526 0.535 0.424 

Sodium 0.433 0.138 0.488 0.179 

All Traditional Features 0.501 0.349 0.344 0.378 

All Automated Features 0.708 0.636 0.544 0.513 

All Features 0.625 0.484 0.459 0.475 

 
 
 
 

Table 2



Table E1. Clinical Characteristics. P-value for age computed using student's t-test. All 

other p-values computed using Fisher's exact test. *Fisher-exact score not valid for 

sample sizes of 0. Statistics not applied to race because of high number of unknowns. 

 
Characteristic Class +VSP -VSP p-value  

Age (mean)   
56.37 (SD 
14.43) 

50.83 (SD 
9.33) 0.0420944 

sex female 35 22 0.2260508 

  male 11 13   

race asian 0 1   

  black 9 5   

  white 15 15   

  unknown 21 12   

Tobacco Never smoker 10 (23.81%) 9 (28.12%) 0.9557217 

  Current Smoker 18 (42.86%) 14 (43.75%)   

  Previous Smoker 4 (9.52%) 2 (6.25%)   

  Unknown 10 (23.81%) 7 (16.67%)   

Fisher 3 9 (20.45%) 9 (26.47%) 0.7189402 

  4 25 (56.82%) 16 (47.06%)   

  3/4  10 (22.73%) 9 (26.47%)   

Hunt Hess 1 4 (9.3%) 3 (9.09%) 0.3257751 

  2 4 (9.3%) 5 (15.15%)   

  3 8 (18.6%) 11 (33.33%)   

  4 19 (44.19%) 12 (36.36%)   

  5 8 (18.6%) 2 (6.06%)   

Ruptured 
Aneurysm Anterior communicating artery 11 (25.00%) 15 (42.86%) 0.1640835 

  Internal carotid artery 7 (15.91%) 4 (11.43%)   

  PCOM 10 (22.73%) 4 (11.43%)   

  Basilar artery 6 (13.64%) 3 (8.57%)   

  Middle Cerebral Artery 7 (15.91%) 6 (17.14%)   

  Other 3 (6.82%) 3 (8.57%)   

 
 

Table E1



Table E2: Average Number of Data Values by Clinical Variable. CSF output and ICP 

values only available 63 patients with extraventricular drains (64 had parenchymal 

ICP monitors, additionally).  

 
Clinical Variable Average # of Data Values per 

patient PBD 0-2 (SD) 
Average # of Data Values per 
patient per day (SD) 

CSF Output (24 Hrs Prior) 3.031 (2.061) 1.01 (0.687) 

MAP 38.049 (40.697) 12.683 (13.566) 

HR 38.58 (41.113) 12.86 (13.704) 

ICP (extraventricular drain) 28.344 (33.024) 9.448 (11.008) 

ICP (parenchymal) 22.219 (29.879) 7.406 (9.96) 

Glucose Value 14.062 (17.763) 4.687 (5.921) 

Sodium 1.852 (2.455) 0.617 (0.818) 

 
 

Table E2


