
[2] Narayanan, V., Huang, Y., Tan, G., Jaeger, T., & Burtsev, A. (2020, March). Lightweight kernel isolation with virtualization and VM
functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’20) (pp. 157-171). Awarded Best Paper of the conference.

Evaluation

Data synchronization example for
critical section

Compute shared states

• Device drivers have long been and continue to be a major
source of defects and vulnerabilities inmodern kernels.

• Previous works on isolating device drivers: (1) significant
manual effort and (2) high runtime overhead.

• Recently, some hardware features for efficient isolation have
become available (e.g., vmfunc). These techniques
significantly reduce the overhead of isolation. [2]

• However, isolating drivers remains hard because of the
manual effort required to retrofit the code.

KSplit: Automating Device Driver Isolation [1]

Yongzhe Huang, Vikram Naranyanan, David Detweiler, Kaiming Huang, Gang Tan, Trent Jaeger, Anton Burtsev
Penn State University, UC Irvine, University of Utah

Introduction Compute Shared States

Motivation:
Reduce the manual work necessary for isolating device
drivers asmuch as possible.
Objective: Automate most of key tasks of driver isolation
using static analysis techniques and produce warnings for
developers to resolve the remaining tasks.

Motivation and Objective

System Workflow

Main Challenges

• Minimize the data that need to be synchronized across
isolation boundary at cross-domain calls and returns.

• Correctly handle data synchronization for kernel
concurrency primitives such as spin_lock while minimizing
the amount of synchronized data.

• Correctly handle data synchronization in the presence of
challenging kernel and C language idioms (e.g., pointers to
complex struct hierarchies).

Cross-domain Call Data Synchronization
• Data synchronization for cross-domain calls: Compute data that

needs to be synchronized at domain crossing calls and returns.
• Data access analysis: For each parameter passed across isolation

boundary, use PDG to track the accesses to the parameter.
• All the data read through the parameter during call processing is

synchronized at the cross-domain call invocation.
• All the data modified through the parameter during call

processing is synchronized at the cross-domain call return.
• Minimize synchronized data using shared state: only the shared state

is synchronized between the driver and kernel to minimize the
overhead of cross-domain calls.

1. Identify atomic regions
a) Find atomic primitives in the PDG (e.g., spin_lock, mutex_lock).
b) Use control flow in PDG to compute the code within critical sections.

2. For each atomic region
a) Compute data read within the atomic region and synchronize the data from

the other domain after acquiring the lock.
b) Compute data modified within the atomic region and synchronize the data to

the other domain before releasing the lock.

Concurrency Primitives Data Synchronization

Conclusion

Experiments on 10 automatic isolated drivers

• Commodity CPUs are converging on a set of practical hardware
mechanisms capable of providing support for low-overhead isolation

• The complexity of driver isolation becomes the main challenge for
enabling isolation in commodity systems.

• KSplit takes a step forward by enabling isolation of unmodified device

drivers in the Linux kernel.

Complexity metrics across
several subsystems

Memcached performance

Overhead of marshaling different
data structures

IDL similarity among
similar drivers

Shared state: Shared states are the data structure fields that are
accessed by both driver and kernel through the same structure type.

This information helps limit the amount of data that needs to be
synchronized between isolated domains.

1. Compute a set of data structures accessed by both kernel and driver.
2. Identify all variables on both sides that match any of the shared data structure

types, and analyze the fields accessed through these variables on each side.

3. Take the intersection between the accessed fields on both sides to obtain the
shared accessed fields.

Steps:

Compute and minimize data synchronized across isolation boundary

CNS-1801534: Threat-Aware Defenses - Trent Jaeger (Penn State), Gang Tan (Penn State), Mathias Payer (Purdue/EPFL), Dongyan Xu (Purdue)
CNS-1816282: Information Flow Control Infrastructure - Trent Jaeger (Penn State), Danfeng Zhang (Penn State)

References

Reduce ~30% data synchronization

Few IDL changes required

• KSplit reduces data synchronization by ~30% relative to prior work
• KSplit reduces the manual effort for IDL changes to <60 LOC for the

ten drivers isolated and provides concrete warnings for these cases

[1], Huang, Y., Narayanan, V.., Detweiler, D., Huang, K., Tan, G., Jaeger, T., & Burtsev, A. (2022, July). KSplit: Automating Device
Driver Isolation. In Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI’22) .
Conditionally accepted.

