KSplit: Automating Device Driver Isolation [1]

CNS-1801534: Threat-Aware Defenses - Trent Jaeger (Penn State), Gang Tan (Penn State), Mathias Payer (Purdue/EPFL), Dongyan Xu (Purdue) CNS-1816282: Information Flow Control Infrastructure - Trent Jaeger (Penn State), Danfeng Zhang (Penn State)

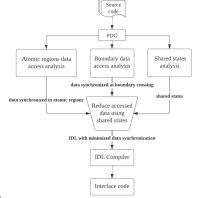
Yongzhe Huang, Vikram Naranyanan, David Detweiler, Kaiming Huang, Gang Tan, Trent Jaeger, Anton Burtsev Penn State University, UC Irvine, University of Utah

Introduction

- Device drivers have long been and continue to be a major source of defects and vulnerabilities in modern kernels.
- · Previous works on isolating device drivers: (1) significant manual effort and (2) high runtime overhead.
- · Recently, some hardware features for efficient isolation have become available (e.g., vmfunc). These techniques significantly reduce the overhead of isolation. [2]
- · However, isolating drivers remains hard because of the manual effort required to retrofit the code.

Motivation and Objective

Motivation:

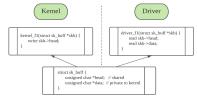

Reduce the manual work necessary for isolating device drivers as much as possible

Objective: Automate most of key tasks of driver isolation using static analysis techniques and produce warnings for developers to resolve the remaining tasks.

Main Challenges

- · Minimize the data that need to be synchronized across isolation boundary at cross-domain calls and returns.
- Correctly handle data synchronization for kernel concurrency primitives such as spin_lock while minimizing the amount of synchronized data.
- · Correctly handle data synchronization in the presence of challenging kernel and C language idioms (e.g., pointers to complex struct hierarchies).

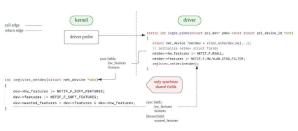
System Workflow



Compute Shared States

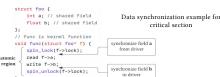
Shared state: Shared states are the data structure fields that are accessed by both driver and kernel through the same structure type. This information helps limit the amount of data that needs to be synchronized between isolated domains.

Steps


- 1. Compute a set of data structures accessed by both kernel and driver.
- 2. Identify all variables on both sides that match any of the shared data structure
- types, and analyze the fields accessed through these variables on each side. 3. Take the intersection between the accessed fields on both sides to obtain the shared accessed fields

Compute shared states

Cross-domain Call Data Synchronization


- · Data synchronization for cross-domain calls: Compute data that needs to be synchronized at domain crossing calls and returns.
- Data access analysis: For each parameter passed across isolation boundary, use PDG to track the accesses to the parameter.
- All the data read through the parameter during call processing is synchronized at the cross-domain call invocation.
- · All the data modified through the parameter during call processing is synchronized at the cross-domain call return.
- Minimize synchronized data using shared state: only the shared state is synchronized between the driver and kernel to minimize the overhead of cross-domain calls

Compute and minimize data synchronized across isolation boundary

Concurrency Primitives Data Synchronization

- 1. Identify atomic regions
 - a) Find atomic primitives in the PDG (e.g., spin_lock, mutex_lock).
 - b) Use control flow in PDG to compute the code within critical sections.
- 2. For each atomic region
 - a) Compute data read within the atomic region and synchronize the data from the other domain after acquiring the lock.
 - b) Compute data modified within the atomic region and synchronize the data to the other domain before releasing the lock.

Evaluation

- KSplit reduces data synchronization by ~30% relative to prior work
- KSplit reduces the manual effort for IDL changes to <60 LOC for the ten drivers isolated and provides concrete warnings for these cases

	<u>6</u>	=			3	8	ž	0100		2		6	0		-	6		
	coretomp	nullnet	itgle	xla	can-raw	sh_edac	- The	a mp	msr	xhci-hod		char/tty (77)	block (17)	net (89)	2dac (13)	hwmon (67)	spi/i2c (38)	ash (53)
SLOC	562	194	27K	38	615	2K	690	54	218	10K		12	-2	ě.	5	2	2	ä
Dry>kern.	21	13	132	63	36	14	36	3	15	45		2				Æ	~	
Kern+drv.	2	11	85	26	17	1	9	2	5	27	SLOC	1047	2535	13302	896	556	471	134
Functions	643	1K	5K	3K	1K	912	1K	133	459	IK	Dry.→kern.	11	60	25	18	10	14	16
(a) Complexity of driver analysis											Kern> drv.	10	16	47	4	5	3	13
Deep copy	31K	46K	999K	214K	153K	24K	75K	11K	24K	134K	Functions	546	2588	2691	839	462	772	784
Access analysis (32)	127	231	4K	1K	694	89	562	13	54	375	Tuneuons	0.10	1000	10071	000	102	1.1.1	
Shared analysis	92	150	3K	733	363	68	306	10	43	263	(a) Complexity of	of driver	interface	28				
Boundary analysis	92	149	2K	724	331	68	279	10	43	197	<u> </u>	15K	53K	73K	16K	10K	12K	18
data synchronization (b) Total number of fields marshaled across all interface functions by each algorithm									Pointers	/64	/310	/353	/107	/61	/71	/92		
Pointers	128/75	19K/87	404K/1,639	82K/362	60K/153	9K/49	28K/189	4K/9	9K/41	48K/179	Unions	0/2	3/12	7/6	0/2	<1/<1	0/2	<1/
Unions	0/0	5/3	10848	24/18	22/29	0.0	1/9	0/0	0/0	0/7	Crit. sec.	5/<1	51/<1	25/<1	5/<1	6/<1	9/<1	9/<
Critical sections	5/0	5/1	70/3	26/1	19/2	2/0	31/0	0/0	8/0	10.0	Atomic op.	<1/0	6/0	2/0	0/0	<1/0	<1/0	<1/
RCU	0/0	1/0	8/0	6/0	90	0.0	6.0	0/0	0/0	0/0	RCU	<1/0	<1/0	<1/0	0/0	<1/0	0/0	
Seqlock	0/0	0/0	3/0	00	0.0	0.0	0.0	0/0	0/0	0/0								<1/-
Atomic operations	0/0	25/1	168/40	49/32	500	5.0	37/2	3/0	3/0	468	Seqlock	9/<1	45/2	45/11	6/0	<1/<1	4,0	10/<
Container of	225/4	557/2	2K/59	1K/102	749/80	419/0	627/25	73/3	68/2	1K/6	Container of	145/4	833/3	1K/9	338/2	133/2	207/2	215
			Impact of shar								(b) Impact of sha	and state	ontimi	rations (nrivate/s	(hered)		
Singleton	70/0	79/0	1,367/0	349/0	147/0	37/0	169/0	9/0	39/0	166/0		53/0		303/0	84/0		66/0	81/
Array	0/1	4/2	92/35	35/1	22/1	9.6	13/5	0/0	0/1	1/1	Singleton		26/0			56/0		
String	1/0	1/0	2/0	00	0.0	2/0	2/0	0/0	1/0	0/0	Array	5/2	27/15	44/20	22/6	2/<1	4/2	4/1
Void	2/1	4/0	140/1	11/0	50	3.0	13/0	0/0	1/0	12/0	String	<1/0	3/0	<1/0	2/0	<1/0	<1/0	<1/
Wild pointer (non-	1/0	0/2	0/4	0/1	0.0	0/3	0/2	0/0	0/0	0/0	Void	5/<1	18/0	12/1	3/0	1/<1	2/<1	6/<
void)		(d) Infe	rence type sem	antics on she	and pointers	(handled)	(learned)		-		Non-void wild pointer	0/<1	0/2	0/3	0/3	0/<1	0/<1	0/2
Time	17	217	546	190	135	22	490	5	7	238	wiid pointer							
1005					n time (secon		1,10											
Statements	70%	86%	(e) Ana 50%	72%	n time (secor	63%	79%	85%	77%	55%		Comp					oss	
Branches	57%	80%	48%	72%	79%	65%	91%	100%	96%	53%		S	evera	ıl sub	syste	ems		
Distance of the second	2730	0170	10.00	(f) Test cer		0.578				required								
IDL (LOC)	163	221	28	(1) Test cov	470	236	306	47	109	1K								
IDL (LOC) IDL change (LOC)	105	5	52	25	30	230	11	4)	2	7								
Dr. charge (LOC)	10	6	10	11	12	0	0	0	0	-	Nu	11 Int	oper	Array	Strine	z Voi	A T	nion

PennState

UNIVERSITY

OF UTAH

Overhead of marshaling different data structures nullnet

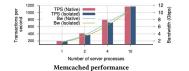
11

alx sh edac

+3/-3

+0/-51 +12/-29

13


Reference

Sharad me

New ID

Shared rpcs IDLA

Shared rpcs Annotat.

Experiments on 10 automatic isolated drivers

Conclusion

- Commodity CPUs are converging on a set of practical hardware mechanisms capable of providing support for low-overhead isolation
- · The complexity of driver isolation becomes the main challenge for enabling isolation in commodity systems.
- · KSplit takes a step forward by enabling isolation of unmodified device drivers in the Linux kernel

References

[1], Huang, Y., Naravanan, V., Detweiler, D., Huang, K., Tan, G., Jaeger, T., & Burtsey, A. (2022, July), KSplit: Automating Device Driver Isolation. In Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI'22) Conditionally accepted.

[2] Naravanan, V., Huang, Y., Tan, G., Jaeger, T., & Burtsey, A. (2020, March), Lightweight kernel isolation with virtualization and VM (VEE'20) (pp. 157-171). Avarded Best Paper of the conference.