KSplit: Automating Device Driver Isolation [1

CNS-1801534: Threat-Aware Defenses - Trent Jaeger (Penn State), Gang Tan (Penn State), Mathias Payer (Purdue/EPFL), Dongyan Xu (Purdue)
CNS-1816282: Information Flow Control Infrastructure - Trent Jaeger (Penn State), Danfeng Zhang (Penn State)

PennState

Yongzhe Huang, Vikram Naranyanan, David Detweiler, Kaiming Huang, Gang Tan, Trent Jaeger, Anton Burtsev T msu

Penn State University, UC Irvine, University of Utah

I Introduction I Compute Shared States
« Device drivers have long been and continue to be a major Shared state: Shared states are the data structure fields that are
source of defects and vulnerabilities in modern kernels. accessed by both driver and kernel through the same structure type.
* Previous works on isolating device drivers: (1) significant This information helps limit the amount of data that needs to be
manual effort and (2) high runtime overhead. synchronized between isolated domains.

Recently, some hardware features for efficient isolation have
become available (eg, vmfunc). These techniques

o . . 1. Compute a set of data structures accessed by both kernel and driver.
significantly reduce the overhead of isolation. [2] 2. Identify all variables on both sides that match any of the shared data structure
However, isolating drivers remains hard because of the types, and analyze the fields accessed through these variables on each side.
manual effort required to retrofit the code. 3. Take the intersection between the accessed fields on both sides to obtain the
shared accessed fields.

Steps:

I Motivation and Objective
Motivation:
Reduce the manual work necessary for isolating device
drivers as much as possible.
Objective: Automate most of key tasks of driver isolation
using static analysis techniques and produce warnings for

}
developers to resolve the remaining tasks. \ : /

kernel_fI(struct sk_buff *skb) {

driver_f1struct sk_buff *skb) {
wiite skb->head; -

read skb->head;
read skb->data;

struct sk_buff {
unsigned char *head; // shared
I Main Challenges) !
* Minimize the data that need to be synchronized across Compute shared states

isolation boundary at cross-domain calls and returns.
« Correctly handle data synchronization for kernel

- : o I Cross-domain Call Data Synchronization
concurrency primitives such as spin_lock while minimizing

the amount of synchronized data. « Data synchronization for cross-domain calls: Compute data that

« Correctly handle data synchronization in the presence of needs to be synchronized at domain crossing calls and returns.
challenging kernel and C language idioms (e.g., pointers to « Data access analysis: For each parameter passed across isolation

complex struct hierarchies). boundary, use PDG to track the accesses to the parameter.
« All the data read through the parameter during call processing is
I System Workflow synchronized at the cross-domain call invocation.

« All the data modified through the parameter during call

processing is synchronized at the cross-domain call return.
* Minimize synchronized data using shared state: only the shared state
(— is synchronized betvvegn the driver and kernel to minimize the

l Ll l overhead of cross-domain calls.
Atomic regions data Boundary data | Shared states
access analysis access analysis analysis

kernel ‘ driver
=

i " clledge ———
data synchronized at boundary crossing Gt

data synchronized in atomic regions

Reduce accessed
data using
shared states

syac fels:
nw_features

netdey->hu_festures |= NETIF_F_RXALL;
netdev->features |= NETIF_F_IM_VLAN_CTAG_FILTER;
register_netdey (netdev);
A
J

IDL with minimized data synchronization int register_netdev(struct net_device *devye—

Gev->hu_features |= NETIF_F_SOFT_FEATURES;
5 Gev->features |= NETIF_F_SOFT_FEATURES;
IDL Compiler dev->uanted_features = dev->features & dev->hw_features; synclields
w_festures
¥ feamres

itered fed:
wanted_features

Interface code
Compute and minimize data synchronized across isolation boundary
l References

[1], Huang, Y., Narayanan, \.., Detweiler, D., Huang, K., Tan, G., Jaeger, T., & Burtsev, A. (2022, July). KSplit: Automating Device
Driver Isolation. In Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI’22) .
Conditionally accepted.

[2] Narayanan, V., Huang, Y., Tan, G., Jaeger, T., & Burtse, A. (2020, March). Lightweight kernel isolation with virtualization and VM
functions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE'20) (pp. 157-171). Awarded Best Paper of the conference

shared states driver probe -
struct net._device # sToc_ctherdev.na(...);

- UNIVERSITY
o OF UTAH

I Concurrency Primitives Data Synchronization
1. Identify atomic regions
a) Find atomic primitives in the PDG (e.g., spin_lock, mutex_lock).
b) Use control flow in PDG to compute the code within critical sections.
2. For each atomic region
a) Compute data read within the atomic region and synchronize the data from
the other domain after acquiring the lock.
b) Compute data modified within the atomic region and synchronize the data to
the other domain before releasing the lock.
struct foo {

dntia; -7/ shared field Data synchronization example for

A float b; // shared field critical section

// func is kernel function |

void func(struct foo*) { synchronize field a
spin_lock(f=>lock) ; from driver

atomic (read f->a; ——

region write f->b; \
spin_unlock(f->lock) ; k_‘ pdusgie Hekil
s
I Evaluation
* KSplit reduces data synchronization by ~30% relative to prior work
* KSplit reduces the manual effort for IDL changes to <60 LOC for the

ten drivers isolated and provides concrete warnings for these cases

B [i F] Fl £ ¥ 3 e P 2
R4 e R S - T A S T - ElE g |a|& &|g
oz # & H g ¢ 3 zl3 2|3 g
g% 4| 3| 2 i i3]38 |8ls
stoc @ | s | 2K | K [65 K [e@p | s | 25 WK 22| |2 |E|8|%
Do F I) 5 @ S % |3 5 s =
Kem pR] 2 LA PR — 1047 | 2535 | 13302] 896 | 556 | 471 | 1340
Funcion CCE 3 3 Ko | K | 5 a9 K | [Drekem 11 | 60 |10 [18|16
@ Complxiy ofdiver aalysis Kemodr. | 10 | 16 | 47 [4 | 5 | 3 | 13
copy [Tk | ek | IS K|S NK] K [Funelons | 596 | 2598 | 2691 | 939 | de2 | 772 | e
Access i (2 | 127|231 | K T 50 .
[t amayie— |92 180 |3k T3] 3668 306|105 26| (@) Complexity of driver inerfuces
T S O 0 I O N 5K | 53K | 73K [16K | 10K | 12K | 18K
Reduce ~30% data Pointers
® o4 | 10| Bs3 | no7 | e | m | o2
Fainers T2K775] 19KIST | 404K/1639] 82KI362 | GOK/IS 9K49 | 28K/IR9| 4K | 9Kl | 48Kii19| | Unions Loz (a2 | W6 | 02 | <l<i| 0 | <I/4
:’"‘""‘l ‘;2 |] 71‘;/" ”;/11" m 1‘& % gg '“é:u Crit. sec. [S/<1_| SU<I| 25/<1| S/<I | 6/<I | 9/<I | 9/<t
il sctons s 3
i £ Wl s | a0 k00| [Atomicop. | <I0 | 60 | 20 | 00 | <10 | <10 | <IT
Seqlod () @[on | o | o0 oo o | |RCU <0 [<170 | <10 | 00| <10 00| <I/<T
Ao aperaions |~ 00 Gom | s su | e | w0 | 30 aen | | Seqock | 9/<I | 452 | 4S/IT| 60 | <I/<I| 40 | 10<I
Continerof £} K102 | 74904190 | 62125 | 738 | 698 1K6 | | Containcrof | 1454 | 833/3| 1K/ | 338/2| 13372 | 20772 | 21573
(€) Topact of shared state optimizations (private/shared) (b) Impact of shared state optimizations (private/shared)
Singleon 0 [70 | L | o0 | @m0 | G0 | 90 | 90 | 160
Amay o | an | ons) 20 o | s | o0 w1 i Singleton 530 [2600 [30301 84/0 | 5600 [660 [81/0
Siing [@ [0 a0 | a0 | o0 | v | | Amy S| 275 | 44n0| 226 | 2/<1 | an | an
oud T 0 N L T - <10 [30 | <U/0 | 20 | <10 | <10 | <10
i o G | 10 | 0z [o4 L B A I oud <1 [180 | 1271 | 30 | <1 | 21 | 6/<1
- Nonvoid ot | o2 | o5 | o3 |0t | ot | 02
(@) nference type semantics o share poirs (hdlcdmanual) wild pointer | <! S Bl
e [am [s [o [1 m [w0 [5 [7 [Z]
() Anstysscxcution tme econds) Complexity metrics across
Siienenis e [s | S | Te | % ew | 9 | 86 | 76 S
Branches \ S5 8% \ F) \ To% |79 6% \ Bl \ Too | 96% |59 several subsystems
@ Tt covenge Few IDL changes required
TOL @00, W [AT [K G [o0 W [W [9 [9 K |
DL change00C) |1 |5 i) % W s [om0 2 7]
D changes COC) |10 |6 |9 i T ———— | [Null | Tnteger | Array | String | Void | Union |
ke posives T (] @ R T N N S
e miclsitsion | 0| 7 3 T2 3 o [z o || Des [O] 8 [32%87 25 [d0%6]2+32]
No, Warnings s 65 E) 3 s i} o s 15| [Cycles | 502 | 532 | 690 | 1310 | 919 | 710 |
Overhead of marshaling different
data structures
)
- % [Reference ixgbe. skx_edac
E 2 e I nullnet | alx sb_edac
88 § Shared rpes 11 73 13
2 H Shared rpes DLy FOI51 | #1229 |+
[8 Shared rpes Annotat. 0 +3/3 0
New IDL 71 3 0
Number of server processes IDL similarity among
Memcached performance similar drivers

I Conclusion
« Commodity CPUs are converging on a set of practical hardware

mechanisms capable of providing support for low-overhead isolation

* The complexity of driver isolation becomes the main challenge for
enabling isolation in commodity systems.

* KSplit takes a step forward by enabling isolation of unmodified device
drivers in the Linux kernel.

