
KNOWLEDGE-AWARE CYBER-PHYSICAL SYSTEMS
André Platzer (PI), João Martins NSF CNS-1446712

Belief-Triggered Control

Stepping up to AF-447:
Precision Approach Path Indicator (PAPI)

Progress: Proof Contexts

PAPI Description Challenge

Encoding Safe Policy

Four lights next to the runway indicate
where aircraft are on the glide-path

Different patterns indicate 5 possible states Poor visibility conditions or malfunction!
What should pilot training and policy be?

October 25, 2017
DRAFT

4.3 Phase 3: Case Study
After the calculus has been proven sound, it is important to test the practical applicability of
the logic. To this end, we will develop case studies inspired by the several examples presented
throughout this proposal. We will, for instance, further develop Example 2.

This program only models doxastic state change, but we can incorporate physical world
change. Let us have a few extra variables, formulas and programs:

• d, the distance to the landing strip
• obs, the distance at which the third PAPI light is finally distinguishable
• alt, the current altitude of the aircraft
• learn-all, the program that learns all lights correctly:

Lp (l1p := l1;l2p := l2;l3p := l3;l4p := l4)

• learn-most, same as above, but with uncertainty for the third light:

Lp (l1p := l1;l2p := l2; (l3p := G [l3p := R);l4p := l4)

• yinput, a variable that represents the vertical input of the aircraft, and thus intent to climb
when yinput > 0, intent to descend when yinput < 0, and to maintain attitude at yinput =
0.

• physics, a program that advances the state of the world by having time pass, e.g. the
distance d becomes shorter, the altitude alt decreases, etc. This would include differential
equations, the dL and thus d4L program to have the world evolve.

• light-upd, a program that, given the current glide-path, updates whether the lights are
green or red, to indicate the glide-path to the pilot.

We may now write a program where the pilot observes the lights correctly if close enough,
or is unsure about the third light if not. Then, depending on what the pilot is able to ascertain
about the lights, they will go through a decision procedure to decide what to do with the air-
craft. Finally, the program allows the aircraft to move for some amount of time, and the status of
the lights are updated to reflect the glide-path. This is repeated until the airplane is safe on the
ground.

⇣
((?d > obs;learn-most) [(?d  obs;learn-all)) ;

decision-procedure;

physics; light-upd
⌘⇤

If the entire program is called prog, a d4L formula that ensures safety might be

safe ! [prog] safe

With this being a formula implying the safety of the aircraft until landing, we can begin to
use the proof rules of our sound calculus to find a proof for the formula.

Before that, however, we have to extend Example 3 with more detailed decision procedures.

38

1. If too far (d > obs), third light can’t be identified
.

2. Pilot decides what to do given beliefs
3. Physics advance, glide path determines lights

A cautious pilot will climb when not certain of a safe glide path

October 25, 2017
DRAFT

4.3 Phase 3: Case Study
After the calculus has been proven sound, it is important to test the practical applicability of
the logic. To this end, we will develop case studies inspired by the several examples presented
throughout this proposal. We will, for instance, further develop Example 2.

This program only models doxastic state change, but we can incorporate physical world
change. Let us have a few extra variables, formulas and programs:

• d, the distance to the landing strip
• obs, the distance at which the third PAPI light is finally distinguishable
• alt, the current altitude of the aircraft
• learn-all, the program that learns all lights correctly:

Lp (l1p := l1;l2p := l2;l3p := l3;l4p := l4)

• learn-most, same as above, but with uncertainty for the third light:

Lp (l1p := l1;l2p := l2; (l3p := G [l3p := R);l4p := l4)

• yinput, a variable that represents the vertical input of the aircraft, and thus intent to climb
when yinput > 0, intent to descend when yinput < 0, and to maintain attitude at yinput =
0.

• physics, a program that advances the state of the world by having time pass, e.g. the
distance d becomes shorter, the altitude alt decreases, etc. This would include differential
equations, the dL and thus d4L program to have the world evolve.

• light-upd, a program that, given the current glide-path, updates whether the lights are
green or red, to indicate the glide-path to the pilot.

We may now write a program where the pilot observes the lights correctly if close enough,
or is unsure about the third light if not. Then, depending on what the pilot is able to ascertain
about the lights, they will go through a decision procedure to decide what to do with the air-
craft. Finally, the program allows the aircraft to move for some amount of time, and the status of
the lights are updated to reflect the glide-path. This is repeated until the airplane is safe on the
ground.

⇣
((?d > obs;learn-most) [(?d  obs;learn-all)) ;

decision-procedure;

physics; light-upd
⌘⇤

If the entire program is called prog, a d4L formula that ensures safety might be

safe ! [prog] safe

With this being a formula implying the safety of the aircraft until landing, we can begin to
use the proof rules of our sound calculus to find a proof for the formula.

Before that, however, we have to extend Example 3 with more detailed decision procedures.

38

A reckless pilot will climb only when certain of an unsafe glide path

Explicit beliefs encourage deeper understanding and granularity

A glide path is safe when the airplane is cannot be low Proof contexts Γ become challenging with changing beliefs

This intuitive rule looks innocent.
With changing belief, it’s unsound!

A counter-example shows that P(x >1) should not remain.

Learning a test program contracts possible worlds, which:
• Eliminates possibility
• Maintains beliefs

l1 l2 l3 l4

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1 [
? (B (reasonable-glidepath)) ; yinput := 0

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1 [
? (B (reasonable-glidepath)) ; yinput := 0

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

L

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

October 27, 2017
DRAFT

? (¬B (l1 = G ^ l2 = G)) ; yinput := 1 [
? (B (l1 = G ^ l2 = G) ^ ¬P (l4 = G)) ; yinput := 0 [
? (B (l1 = G ^ l2 = G) ^ P (l4 = G)) ; yinput := �0.5 [
? (B (l1 = G ^ l2 = G) ^B (l4 = G)) ; yinput := �1

safe-glidepath ⌘ l1 = G ^ l2 = G

? (¬B (safe-glidepath)) ; yinput := 1

? (B (¬safe-glidepath)) ; yinput := 1

Lp

0

@l1 := G;l2 := G;

uncertaintyz }| {
(l3 := G [l3 := R);l4 := R

1

A

� ` B (�) !
([]L?)

� ` [L (?�)]

P (x > 1) ` B (x = 1) ! P (x > 1)
([]L?)

P (x > 1) ` [L (?x = 1)]P (x > 1)

�R,�B ` B (�) !
([]L?)

�R,�B,�P ` [L (?�)]

↵ [�

?�;↵

L (↵)

[↵]�

43

Run either program non-deterministically

Check if condition is met, then run program

Pilot learns program executed

After all program runs, property holds

