KNOWLEDGE-AWARE CYBER-PHYSICAL SYSTEMS

André Platzer (PI), João Martins NSF CNS-1446712 Carnegie Mellon University

Stepping up to AF-447: Precision Approach Path Indicator (PAPI)

PAPI Description

Four lights next to the runway indicate where aircraft are on the glide-path
0000 Different patterns indicate 5 possible states

Challenge

$L(11:=G ; 12:=G ; \overbrace{(13:=G \cup 13:=R)}^{\text {uncertainty }} ; 14:=R)$
Poor visibility conditions or malfunction!
What should pilot training and policy be?
Encoding Safe Policy
$(((? d>o b s ;$ learn-most $) \cup(? d \leq o b s ;$ learn-all $))$; decision-procedure; physics; light-upd)*

1. If too far ($\mathrm{d}>\mathrm{obs}$), third light can't be identified
2. Pilot decides what to do given beliefs
n Hhuninondunnon_did path determines lights
$\alpha \cup \beta$ Run either program non-deterministically
$? \phi ; \alpha$ Check if condition is met, then run program
safe $\rightarrow[$ prog $]$ safe
$L(\alpha)$ Pilot learns program executed
$[\alpha] \phi$ After all program runs, property holds

Progress: Proof Contexts

Proof contexts Γ become challenging with changing beliefs
$\frac{\Gamma \vdash B(\phi) \rightarrow \psi}{\Gamma \vdash[L(? \phi)] \psi}([L ?)$
This intuitive rule looks innocent. With changing belief, it's unsound!

A counter-example shows that $P(x>1)$ should not remain.

$$
\frac{P(x>1) \vdash B(x=1) \rightarrow P(x>1)}{P(x>1) \vdash[L(? x=1)] P(x>1)}
$$

Learning a test program contracts possible worlds, which:

- Eliminates possibility
- Maintains beliefs

$$
\frac{\Gamma_{R}, \Gamma_{B} \vdash B(\phi) \rightarrow \psi}{\Gamma_{R}, \Gamma_{B}, \Gamma_{P} \vdash[L(? \phi)] \psi}(\square L ?)
$$

