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Compute the mutual information for an entire map of 
20m x 20m at 0.1m resolution in under a second while 

consuming under 2W on an FPGA* 
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Each FSMI core on FPGA faster than 
CPU core by 10x

Compute FSMI on more locations 
reduce trajectory length

[Li et al., RSS 2019]

FastDepth: Fast Monocular Depth Estimation
Apply NetAdapt, compact network design, and depth wise decomposition 

to decoder layer to enable depth estimation at high frame rates on an 
embedded platform while still maintaining accuracy

[Wofk*, Ma* et al., ICRA 2019]

Configuration: Batch size of one (32-bit float)

Models available at 
http://fastdepth.mit.edu
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Research TasksResearch Opportunity
A broad range of next-generation CPS applications will be
enabled by low-energy sensing and computing, in particular,
by miniaturization. For instance, (i) insect-size drones with
swarming capabilities in massive numbers, (ii) pill-size
medical robots that can intelligently navigate the human
digestion system, (iii) intelligent satellites on chip that can
navigate far corners of the Solar system, (iv) low- energy
glider drones and underwater vehicles that can operate
continuously for months.

In the past decade, there has been tremendous advances in
designing and building two of these elements, namely the
sensors and actuators. However, powerful computers that
modern artificial intelligence and autonomy depend on are
still bulky, heavy and energy-hungry. The aforementioned
applications require computers that are orders of magnitude
smaller, lighter, and more energy-efficient. The current
approach of developing algorithms and software that are
designed for off-the-shelf general-purpose CPUs and GPUs,
fails to deliver. A paradigm shift in computing is necessary
towards enabling low-energy, miniature mobile robotic CPS
that still provides provable guarantees on completeness,
optimality, robustness and safety.
We will develop novel algorithms and computing
hardware for low-energy mobile robotic Cyber-Physical
Systems.

CPS: Synergy: Collaborative Research: LEAR-CPS: Low-Energy computing for 
Autonomous mobile Robotic CPS: A Hardware-and-Algorithms Co-design Approach

Sertac Karaman, Department of Aeronautics and Astronautics 
Vivienne Sze, Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology 

2018 NSF Cyber-Physical Systems Principal Investigators’ Meeting, Nov. 15-16

An example integrated system for low-energy mobile robotic CPS

only 26 bits to store its dynamic range (1b/pixel), threshold (5b) 
and minimum value (5b). With a small overhead and a 1.4KB line 
buffer, compression reduces the frame memory size by 4.4x and 
power by 4.9x. Compressed frames are not used in FD due to 
blocking and quantization noise as shown in Fig. 3. The image 
compression increases the average error by only 0.06%. 

 
Fig. 3 Lossy image compression on Frame Memories  

 

Feature Tracks Data Structure 
Fig. 4 shows the data structure used to store the 3D feature 

tracks, which contains each feature’s 3D position and its 
corresponding KF ID. It accounts for 88% of the Graph memory. 
Each feature has an age indicating how many KFs it appears in 
before it is discarded. The chip supports a configurable feature age 
with a maximum of 10 KFs. Storing tracks in one memory 
requires 962KB as shown in Fig. 4. However, this 40,000-entry 
memory is sparsely populated with a maximum of 4,000 
measurements depending on the image sequence. A two-stage 
memory architecture is used instead: the first sparse memory 
stores KFs ID with pointers to the second dense memory, which 
stores the 3D positions. This reduces the graph memory size by 
5.4x, and increases access latency by only one cycle. 

 
Fig. 4 Two-stage storage of feature tracks in Graph Memory 

 

Linear Solver Sparsity 
After linearizing the optimization problem, a linear solver (LS) 

is used to solve for state update Δx given HΔx=ε using CH and BS 
as shown in Fig. 5. The Hessian matrix H and ε describe how VFE 
and IFE data affect each of the 20 KFs in the horizon, where each 
KF has 15 variables, hence the matrix size of 300x300. Matrices 
H, and its Cholesky decomposition L, reuse the same 703KB 
memory for in-place computation. The memory size can be 
reduced by 2x by exploiting the symmetry in H and L, and storing 
only the matrix lower triangle. Fig. 5 shows the fixed sparsity of H 
and L. A memory wrapper masks the read/write operations in the 
zero locations and generates memory addresses based on matrix 
coordinates. Sparse storage reduces the linear solver memory size 
by 5.2x, with an area overhead less than 1%. The LS also exploits 
sparsity for a 7.2x speed up by skipping the zero locations when 
traversing the matrix.  

 
Fig. 5 Exploit sparsity to reduce Linear Solver Matrix Memory 

 

Implementation and Results 
The chip is implemented in 65nm CMOS. It is tested using the 

EuRoC MAV dataset [6], which is a challenging drone dataset 
with different sequences having high-speed rotations, low lighting 
conditions and blurred images. The chip can process 752x480 
stereo images at a rate of 28 - 171 fps in real-time, depending on 
the sequence, operating at 1V with a measured average power 
consumption of 24mW. It updates the states and the sparse 3D 
map at KF rate of 16 - 90 fps. Fig. 6 shows the die photo and the 
chip specifications, along with a plot of the throughput range of 
the 11 sequences in the dataset. Fig. 7 shows a trajectory output 
example compared to the ground truth with an average error of 
0.28%. Finally, compared to previous work, this work uses 2.5x 
less memory than [2], and consumes less power than [5], which 
performs only BE, while this work performs full VIO processing. 
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Visual-Inertial Odometry on Chip

scale, the power required for computing would be more than five times more than that required for sensing
and actuation! The differences are exacerbated as the size of the robot gets smaller. For example, pico-scale
aerial robotic vehicles are reported to require only 100 milliWatts of power to lift themselves [4]. Cameras
that run under 100 milliWatts can also be found. Hence, at the pico scale, the power for computation is more
than two order of magnitudes, when compared to that required for actuation and sensing.

studies to design and manufacture bio-inspired legged
robots to achieve power efficient, fast, silent and stable
legged locomotion on deep or very shallow water
surfaces. Hu et al. [13] proposed a mechanical water
strider powered by an elastic thread. Suhr et al. [17]
developed a controllable water strider robot utilizing
three piezoelectric unimorph actuators. Song et al. [18, 19]
studied the numerical modelling of supporting legs
by developing, respectively, a rigid-leg model and a
compliant-leg model, and built a non-tethered water
strider robot with two miniature DC motors and a lithium
polymer battery. Suzuki et al. [20] showed two water
strider robots with hydrophobic microstructures on the
surface of the supporting legs driven by a vibration motor
and a slider-crank mechanism, respectively. Shin et al.
[21] and Zhou et al. [22] developed a water-jumping robot
that was able to achieve a vertical jumping motion on the
water surface with a latch mechanism driven by a shape
memory alloy actuator.

In this work, to achieve efficient and fast legged
propulsion, a new improved water strider robot, called
STRIDE II, using a DC motor actuated four-bar elliptical
leg rotation mechanism for water propulsion is proposed.
This robot has concentric circular footpads that are
designed, analysed and manufactured using laser-cutting
to generate more lift force per unit area and greater
stability when compared to STRIDE [19]. Moreover, the
drag force model of the supporting structure and the
propulsion mechanism are investigated and explained in
detail. Finally, the robustness and the payload capacity of
the robot are improved by the new design while keeping
such features as the silent operation, slight subsurface
disturbance and manoeuvring capabilities in both deep
and shallow water of the older version, STRIDE [19].
This work is an extension and advanced version of our
previous conference paper [23].

2. Problem Statement

Water strider insect locomotion exemplifies robust and
efficient water surface walking because of the lift force
mechanism involved, the low drag force on the supporting
legs and the elliptical trajectory of the propelling legs.
Therefore, these three features should be captured in the
design of a water strider-inspired robot.

The lift force mechanism that a water strider insect
dominantly uses is the surface tension force of the
water, which is linearly proportional to the length of the
supporting legs. Since the weight of the insect scales
with its volume, if it is small in size, then the surface
tension force is used as the lift force mechanism instead
of buoyancy. To mimic the water strider insect, the robot
should use surface tension as the dominant part of the
lift force; therefore, the robot should have a relatively
low weight and small size, but long legs to support
itself on water. The water strider robot should also have
enough payload capacity to carry on-board electronics,
a power supply, actuators and sensors for control,
autonomous locomotion and potential future applications,
like monitoring water quality. On the other hand, for
a robot to have a high payload capacity using surface

tension, the required leg lengths might be unrealistically
long. Therefore, the supporting structures are designed
as concentric circular footpads, which increase the total
length subjected to lift force while keeping the total area
of the supporting structures relatively small. The lift
force mechanism and the results are explained in detail in
Section 3.

The drag forces that a water strider insect experiences
are relatively low at the supporting legs, enabling them
to move rapidly and efficiently on the water’s surface.
This is due to the lift force mechanism of a water strider,
which does not require the insect to break the water
surface to stay afloat. Therefore, in order to claim that the
designed robot is efficient for water surface locomotion,
the drag force model for the robot should be established,
as explained in detail in Section 4.

In addition to the problems concerning lift force generation
and drag force modelling, the propulsion mechanism of
the robot should be designed so that the drag forces on
the propelling legs, which are propulsion forces for the
robot due to the momentum transfer principle [15], move
the robot quickly. On the previous STRIDE, a miniature
DC motor-driven actuating mechanism that was capable
of creating sculling motions was used. The propelling
wire-leg was formed into a rectangular loop and connected
to the motor through a coupling. Therefore, the motion
of the propelling wire-leg had a circular trajectory [19].
However, a more desirable means of propulsion employs
an elliptical-like trajectory for the propelling wire-legs,
as longer contact between the water surface and the
propelling wire-legs is able to produce more propulsion
in every driving stroke. Therefore, a four-bar mechanism,
explained in Section 5.1.2, is designed which can create an
elliptical-like trajectory for the propelling legs to efficiently
increase the propulsion forces. The agility of the robot,
its complexity and the availability of parts that are used
in the propulsion mechanism should also be considered.
Within these considerations, the final design of STRIDE II
is shown in Figure 1.

Figure 1. Photo of STRIDE II: A: The robot body with a control
board, a battery and two four-bar actuators; B: Four sets of circular
concentric supporting footpads. C: Two propulsion legs with an
elliptical rotation trajectory, driven by two DC motors.
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Fig. 6. Peristaltic crawling locomotion of the robot is displayed in a sequence
of snapshots, from top to bottom. On the top, the initial relaxed state (with the
legs marked) is displayed. The three following images show the contraction of
each segment, which correspond to the control signal supplying current to their
embedded SMA coils in order. The bottom image is the final relaxed state.

snapshots in Fig. 6. The two legs protruding under the robot on
both ends can also be seen in this figure. As mentioned before,
the legs are folded in the same direction, creating a frictional
anisotropy to drive the robot forward. In future implementa-
tions, the legs themselves can be actively angled to drive the
robot backwards. Note that, while a tetherless implementation
using two miniature LiPoly batteries (3.7 V, 160 mAh, 2.3 g
each) is feasible (yielding an operation time of 74 min with the
parameters given in Table II), in these experiments, the robot is
powered by off-board power.

We designed and printed a family of origami robots and mech-
anisms in different shapes and sizes, as displayed in Fig. 7. The
robot shown in Fig. 6 is the latest one with feet incorporated.
The feet are manually angled and tested for friction in forward

Fig. 7. Collection of origami robots and mechanisms fabricated by the pro-
posed procedure. From left to right: the first column displays axial springs,
second column shows the negative Poisson’s ratio structures, and the rest are
robotic worm bodies in various shapes and sizes. The horizontal robot is the
final prototype used in experiments.

Fig. 8. Displacement of the origami worm robot over time.

and backward directions before experiments to make sure the
necessary anisotropy is formed. The robot crawled on flat wood
and paper surfaces on a tabletop, in a total of ten experiments,
with about 100 mm displacements.

To quantify the speed of the worm robot, we used image
processing techniques. Using a webcam, an initial image of the
background is taken first and the robot is placed. By driving
the robot over the known background, its position can be ac-
curately detected by simple background subtraction. We traced
the forward edge of the robot with this motion detection setup
and converted the pixel information to millimeters to achieve
the displacement curve shown in Fig. 8.

The robot crawls about 50 mm in 3 min at an approximately
linear rate for an average forward velocity of 18.5 mm/min,
which is about 77% of the expected result from (1). The oscil-
lations in the data coincide with the actuation of segments and
show the effectiveness of the motion detection.

The speed of the robot can be improved with a loss of safety
by increasing the input current and reducing the actuation period
correspondingly. Another improvement can be made by using
a longer robot with more segments to be able to reduce the
cooling period between actuations. Using an actuation current
Ion = 1 A and an actuation period of �on = 0.5 s, leaving all
other control parameters constant, the theoretical speed becomes
36.9 mm/min. Using these actuation parameters, we performed
experiments on the repeatability of speed on three surfaces in
Fig. 9.

In these experiments, the robot is placed on a flat surface
and the time it takes to traverse a defined distance of 50 mm is

����_+'''_+PYCTP8YIRP8K_$RPDCTCP>C_RP_2R;RYI>W_8PA_"[YRN8YIRP_�+$2"_
-8TKWT[GC�_)CTN8P]�_/8]_�����_����_

��	��� ���������	��� 	�� ��������� �� �������� ��
������ ��	���

37MZBJ_.�_ (BJXQO�_ .H=F7BJ_ 4�_ 4QJJB\�_ #7E@7V_ &�_ 0O7J�_ &7OHBJ7_1ZV�_ 7O@_1Q:BSX_ ,�_ 5QQ@_

(J^cZAc���������" 	��" �������" 	�" �	��" 	��" �� �����"
������" ���" ������!����" ����� " �	������" ����	���
�!" ��"
��" �������" ���"�����"  �	��" ��"�����
������"��" ����"�����" ��"
������" 	�����	�����"���" ���	�"�	�����	����" ��" �����!�" ����"
	�" ������	���
�!�" �	��" �����������" 	��" ��	�" 	�����	������"
����" �	��" ������" 	" �����" ���" �����������" ��" ������"
��
���" ����"������������	�"�	���	��"
	��"��" ��	�"����!"
���!���" 	���	��" 
!" ����" �	����" �����" �
���" ���������"
����" �����" �	�" �����" ��" 
" �	�	
�" ��" ������	�" ��������"
	�������������"������" �����	����	
"	���
�!�"	��"�����	��"	��"
�	��!" ������" ��" ��������" ��
��" �	�" ������" ��" �������	�"
��" �����" ��" ����" ��������" ����" ��" 	�����	����" ��" �������"
�������" ��" ��
��"�	�" 	
�" ��" ����" ����" ���" ��������	�" ����"����"
����" 	���" ���	�����" ������" �� " �����" ����" ������" ��
��"
�������	��" ����������" 	�" 	" ���" ��" ���" ���������" ��"
������"

(�b (/520#7"5(0/b

1WLSY<=O@b WT=TYXb <W@b <b >O<XXb TAb R<>KLS@Xb YK<Yb <W@b LS@]`
U@SXL[@
b @<X^b YTb ?@XLJSb <S?b R<SZA<>YZW@
b <S?b <R@S<=O@b YTb
W<UL?b UWTYTY^ULSJb :�;
b :�;�b 5K@X@b YW<LYXb <W@b <>KL@[@?b =^b YK@b
ZX@b TAb A<=WL><YLTSb R@YKT?Xb XZ>Kb <Xb O<X@W�R<>KLSLSJ
b OLYKTJ`
W<UK^
b <S?b UL>N�<S?�UO<>@b >LW>ZLYb <XX@R=O^�b $<>Kb TAb YK@X@b
R@YKT?Xb LXb STRLS<OO^b Y\T�?LR@SXLTS<O
b S@>@XXLY<YLSJb <b FS<Ob
YW<SXATWR<YLTSb AWTRb Y\Tb YTb YKW@@b ?LR@SXLTSX�b 5Tb YKLXb @S?
b
ATO?LSJbK<Xb=@@SbZYLOL_@?b<Xb<b[@WX<YLO@b<S?bLS@]U@SXL[@bY@>K`
SLVZ@b YTb >W@<Y@b >TRUO@]b YKW@@�?LR@SXLTS<Ob R<>KLS@Xb HTRb
Y\T�?LR@SXLTS<Ob XYWZ>YZW@X�b !^b U<YY@WSLSJb Y\T�?LR@SXLTS<Ob
R<Y@WL<OXb<S?bYK@Sb<XX@R=OLSJb[L<bATO?LSJ
b LS@]U@SXL[@bWT=TYXb
><Sb =@b W<UL?O^b ?@XLJS@?
b =ZLOY
b <S?b Y@XY@?�b
1W<>YL>@?b ATWb KZS?W@?Xb TAb ^@<WXb <Xb YK@b <WYb TAb TWLJ<RLb :�;
b

ATO?LSJb K<Xb <OW@<?^b =@@Sb XKT\Sb YTb =@b ><U<=O@b TAb <b \L?@b
[<WL@Y^b TAb J@TR@YWL@Xb :�;
b :�;
b LS>OZ?LSJb <S^b G<Yb UTO^JTS<Ob
W@JLTSb :�;b <S?b <S^b T=M@>Yb >TSXLXYLSJb TAb >Z=@Xb :�;�b !@><ZX@b
TAb YKLXb [@WX<YLOLY^b TAb ATWRb <S?b X><O@
b LYb K<Xb =@@Sb T=X@W[@?b
LSb =LTOTJ^b AWTRb YK@b TWJ<Sb YTb YK@b RTO@>ZO<Wb O@[@Ob :�;
b :�;
b
:��;�b%TO?LSJbK<Xb<OXTb=@@Sb?@RTSXYW<Y@?b YTbK<[@bR<S^bZX@Xb
LSb @SJLS@@WLSJ
b LS>OZ?LSJb U<U@Wb <>YZ<YTWXb :��;
b XUWLSJXb :��;
b
<S?b UWTJW<RR<=O@b XYWZ>YZW@Xb :��;�b (Sb <??LYLTSb YTb OT\b >TXY
b
ATO?LSJb K<Xb OTJLXYL><Ob =@S@FYX
b XLS>@b XYWZ>YZW@Xb <W@b @<XL@Wb YTb
XYTW@b<S?b YW<SXUTWYb LSb<bUO<S<Wb ATWR�b 5KLXb\TZO?b=@b [<OZ<=O@b
LSb XU<>@b <UUOL><YLTSXb :��;b <S?b >TRR@W>L<Ob XKLUULSJb :��;�b
"W@<YLSJb >TRUO@]bJ@TR@YWL@Xb <S?bR@>K<SLXRXb =^bR<SZ<Ob

ATO?LSJbW@VZLW@Xb<bXLJSLF><SYb<RTZSYbTAbYLR@b<S?b@AATWY�b4@OA`
ATO?LSJb LXb YK@W@ATW@b ?@XLW<=O@b YTb <XX@R=O@b YKW@@�?LR@SXLTS<Ob

�	J �	J �*6B=<�J �	J �	J �=66*G�J &<)J �	J �k #==)J &@*J E3B1J B1*J �(1==6J =+J
�<03<**@3<0J &<)J �>>63*)J �(3*<(*AJ &<)J B1*J #GAAJ �<AB3BCB*J +=@J 3=6=03I
(&66GJ �<A>3@*)J �<03<**@3<0�J �&@D&@)J !<3D*@A3BG�J �&8'@3)0*�J ��J ���� k
_;S%_F;_�K;Yf;YC�FCek

�	J �	J �<&6J &<)J �	J �CAJ &@*J E3B1J B1*J �=8>CB*@J �(3*<(*J &<)J �@B3-(3&6J
�<B*6630*<(*J�&'=@&B=@G�J �&AA&(1CA*BBAJ �<AB3BCB*J =+J�*(1<=6=0G�J�&8'@3)0*�J
��J����#�k!��J

!� ������������������������_^����_+'''_ ���_

�9�_

�30	J /�k �&�J �1*J BE=�)38*<A3=<&6J 3<(1E=@8J @='=B�J '*+=@*J 3BJ 1&AJ +=6)*)J 3<B=J
3BAJ +C<(B3=<&6J A1&>*	J �'�J �1*J +=6)*)J 3<(1E=@8�J &+B*@J B1*J A*@D=J &<)J '&BB*@GJ
1&AJ '**<J &))*)	J �13AJ @='=BJ E*301AJ �#k0�J &<)J 8=D*AJ &BJ &J @&B*J =+J �k8;A	J

XYWZ>YZW@Xb AWTRb Y\T�?LR@SXLTS<Ob R<Y@WL<OXb \LYKTZYb @]Y@WS<Ob
R<SLUZO<YLTS�b 4@OA�ATO?LSJb LXb [<OZ<=O@b \K@Sb YK@b TU@W<YLSJb
X><O@b LXb UWTKL=LYL[@O^b XR<OO
b TWb YK@b >TXYb TAb <>YZ<YLTSb LXb UWT`
KL=LYL[@O^b @]U@SXL[@b :��;
b <S?b K<Xb =@@Sb W@<OL_@?b LSb <b [<WL@Y^b
TAb \<^X�b .<JS@YL>b F@O?Xb K<[@b =@@Sb ZX@?b =^b @R=@??LSJb
R<JS@YL>bR<Y@WL<Ob LSYTb KLSJ@?bRL>WTXYWZ>YZW@Xb YTb X@O@>YL[@O^b
<>YZ<Y@b ATO?Xb :��;
b :��;�b b [<WL@Y^b TAbRL>WT� <S?b S<ST�X><O@b
XYWZ>YZW@XbK<[@b=@@Sb?@XLJS@?bYTbX@OA�<XX@R=O@bZS?@WbZSLATWRb
@S[LWTSR@SY<Ob >Z@Xb ?Z@b YTb UTO^R@Wb X\@OOLSJb :��;
b XZWA<>@b
Y@SXLTSb :��;
b TWb >K@RL><Ob YWLJJ@WXb :��;�b
4K<U@b R@RTW^b R<Y@WL<OXb �4..X�b <W@b <STYK@Wb <UUWT<>Kb

YTb KLSJ@b <>YZ<YLTSb YK<Yb K<[@b ?@RTSXYW<Y@?b X@OA�<XX@R=OLSJb
R@>K<SLXRXb LSb YKW@@b \<^Xb :��;
b :��;
b :��;�b 5K@b XLRUO@XYb
R@YKT?b LXb YTb UW@�UWTJW<Rb YK@b FS<Ob >TSATWR<YLTSb LSYTb YK@b
�R@RTW^�b TAb YK@b R<Y@WL<O�b YK@b 4..b \LOOb RTWUKb LSYTb YKLXb
>TSATWR<YLTSb ZS?@Wb ZSLATWRb K@<YLSJb :��;�b 5KLXbR@YKT?b XYLOOb
W@VZLW@Xb YKW@@�?LR@SXLTS<Ob A<=WL><YLTSb Y@>KSLVZ@Xb ?ZWLSJb YK@b
UWTJW<RRLSJ
b =ZYb ><Sb <OOT\b ATWb @<XL@Wb YW<SXUTWY<YLTSb <S?b
XYTW<J@�b 5K@b X@>TS?b LXb YTb ZX@b4..Xb<Xb KLSJ@Xb <YY<>K@?b YTb <b
U<XXL[@b\<OOb :��;
b :��;�b5K@X@b><Sb=@b<>YL[<Y@?b\LYKb<bOT><ObTWb
ZSLATWRb XYLRZOZX
b =ZYb YK@b A<=WL><YLTSb TAb YK@X@b >TRUTXLY@Xb LXb
RTW@b >TRUO@]�b YK@b KLSJ@XbRZXYb =@bR<SZA<>YZW@?b X@U<W<Y@O^
b
<S?b YK@Sb LSY@JW<Y@?b LSYTb YK@b U<XXL[@b >TRUTXLY@�b
%LS<OO^
b 4..Xb K<[@b =@@Sb ZX@?b YK<Yb ZS?@WJTb ZSLATWRb

Figure 4: A selection of robotics applications are shown. From left to right:
Robot water strider spends roughly 1 Watt of electrical power to move roughly
an inch per second on water [5], origami-inspired worm robot spends 0.96
Watts of electrical power to travel 1 inch in 100 seconds [6], an inchworm robot
that spends 0.9 Watts of electrical power to travel 7 inches in 100 seconds [7].

The application domain of
low-energy mobile robotic CPS

go far beyond the nano- and pico-
scale robots. Other robotics ap-
plications include robotic glid-
ers, robotic water striders, printed
robots, micro soft robots, and
many others. See Figure 4. In
these most of these applications,
even though the size of the robot
is relatively large, the energy con-
sumed by the robot is still fairly
low, e.g., around 1 Watt.

One might wishfully expect that, miniaturization in the consumer electronics industry will eventually
come to rescue with low-energy general-purpose computers that will run existing robotics algorithms and
software on very little energy budgets. Unfortunately, even the consumer electronics industry started rapidly
moving away from the utilization of general-purpose central processing units for compute-heavy tasks. In-
stead, specialized computing elements, such as Field Programmable Gate Arrays (FPGAs) and Application
Specific Integrated Circuits (ASICs), are now common, specifically for processing massive amounts of sens-
ing data, e.g., for camera images [8, 9]. This is primarily due to the fact the Moore’s law [10] and Dennard
scaling [11], which predict that transistors will shrink and be faster and more energy-efficient at an expo-
nential rate, respectively, have slowed down or ended over the past decade [12]. As a result, today’s mobile
phones require specialized hardware to perform tasks such as video compression, speech recognition, cryp-
tography, and more; thus, it is increasingly important to explore specialized hardware for robotics.

In almost all of these cases, implementation on specialized computing hardware, such as FPGAs and
ASICs, requires a careful rethinking of the algorithms themselves. To achieve substantial power savings,
most specialized hardware does not include complex floating-point arithmetic-logic units or massively-sized
memory [13, 14]. Instead, the hardware is specially designed for the algorithm that it implements. The al-
gorithm, in turn, is designed based on this computing hardware. In essence, the hardware and algorithm

components are co-designed to achieve the same performance, but at substantially low power. For instance,
specialized hardware can optimize the data processing order to leverage data reuse and reduce data move-
ment; the algorithms can be designed to exploit data reuse for reduced power consumption [15]. Orders
of magnitude power savings are reported using FPGA and ASIC implementations in the literature [16, 17],
particularly in applications that work with massive data, such as those obtained using cameras.

2 Research Description
In this section, we provide a thorough description of the research effort. In Section 2.1, we discuss the
intellectual merit of this proposal. In Section 2.2, we provide a short background on the hardware design
principles that guide the design of application-specific integrated circuits as well as the essentials of algo-
rithmic foundations of autonomy. In Section 2.3, we describe the specific research tasks in detail. We leave
evaluation/experimentation plan and the project management to Sections 3 and 4, respectively.
2.1 Intellectual Merit
The intellectual merit of this proposal is found in the development of novel algorithms and novel comput-
ing hardware for low-energy mobile robotic Cyber-Physical Systems. The proposed research will enable
low-energy computation for full autonomy by way of minimizing energy consumption during both design
time and run time. Our approach is to simultaneously design the computing hardware (integrated circuits)
and the autonomy algorithms to achieve low-energy performance that is orders of magnitude energy savings
when compared to existing solutions. Specifically, we propose to develop novel computing hardware and
algorithms for (i) visual-inertial state estimation, (ii) probabilistic mapping and mutual-information-based
map analysis, and (iii) energy-aware motion planning and decision making. In each case, the new methods
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Example low-energy mobile robotic CPS. Each vehicle consumes
less than 1 Watt of electrical power for actuation.

Research Task 1: Designing hardware and 
algorithms for visual-inertial state estimation
• Task 1.1: Image Buffer Compression with Provable 

Feature Detection/Tracking Performance Guarantees
• Task 1.2: Energy-efficient Feature Selection for Back-

end with Provable Sub-optimality Guarantees

Research Task 2: Designing hardware and 
algorithms for mapping and information analysis
• Task 2.1: Creating Maps from Sparse Noisy 

Measurements
• Task 2.2: Image Compression for Mutual-information 

Maps for Exploration with Provable Guarantees on 
Information Loss

Research Task 3: Designing hardware and 
algorithms for decision making and planning

Research Task 4: Developing Principles for the Co-
Design of Computing Hardware and Algorithms for 
Low-energy Robot Perception

Research Task 5: Systems Integration, ASIC 
Fabrication, and Experimental EvaluationDesign of miniature UAVs will be driven not by size/weight but by power.
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More info at 
http://navion.mit.edu
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Information-theoretic Mapping

Depth Estimation
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“FastDepth: Fast Monocular Depth Estimation on 
Embedded Systems,” IEEE International Conference 
on Robotics and Automation (ICRA), May 2019.
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http://fastdepth.mit.edu

Where to Go Next: Planning and Mapping

Select candidate 
scan locations

Compute Shannon MI and 
choose best location

Move to 
location 

and scan

Update 
Occupancy 

Map

Where to scan?

Occupancy map Mutual information map

Mutual Information Updated Map

Robot Exploration: Decide where to go by computing 
Shannon Mutual Information
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Challenge is Data Delivery to All Cores

Core N

Core 2

Core 1Read Port 1

Read Port 2
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Power consumption of memory scales with number of ports.
Low power SRAM limited to two-ports!

Data delivery, specifically memory bandwidth, 
limits the throughput (not compute)

http://navion.mit.edu
http://navion.mit.edu

