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Research Opportunity

A broad range of next-generation CPS applications will be
enabled by low-energy sensing and computing, in particular,
by miniaturization. For instance, (i) insect-size drones with
swarming capabilities in massive numbers, (i) pill-size
medical robots that can intelligently navigate the human
digestion system, (iii) intelligent satellites on chip that can
navigate far corners of the Solar system, (iv) low- energy
glider drones and underwater vehicles that can operate
continuously for months.

In the past decade, there has been tremendous advances in
designing and building two of these elements, namely the
sensors and actuators. However, powerful computers that
modern artificial intelligence and autonomy depend on are
still bulky, heavy and energy-hungry. The aforementioned
applications require computers that are orders of magnitude
smaller, lighter, and more energy-efficient. The current
approach of developing algorithms and software that are
designed for off-the-shelf general-purpose CPUs and GPUs,
fails to deliver. A paradigm shift in computing is necessary
towards enabling low-energy, miniature mobile robotic CPS
that still provides provable guarantees on completeness,
optimality, robustness and safety.

We will develop novel algorithms and computing
hardware for low-energy mobile robotic Cyber-Physical
Systems.
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Design of miiatre UAVs will be driven not by size/weight but by power.

Gyroscope

Magnetometer

Solar cells

Microcontroller

Antenna

Example low-energy mobile robotic CPS. Each vehicle consumes
less than 1 Watt of electrical power for actuation.

2018 NSF Cyber-Physical Systems Principal Investigators’ Meeting, Nov. 15-16

Research Tasks

Research Task 1: Designing hardware and

algorithms for visual-inertial state estimation

» Task 1.1: Image Buffer Compression with Provable
Feature Detection/Tracking Performance Guarantees

» Task 1.2: Energy-efficient Feature Selection for Back-
end with Provable Sub-optimality Guarantees

Research Task 2: Designing hardware and

algorithms for mapping and information analysis

» Task 2.1: Creating Maps from Sparse Noisy
Measurements

» Task 2.2: Image Compression for Mutual-information

Maps for Exploration with Provable Guarantees on
Information Loss

Research Task 3: Designing hardware and
algorithms for decision making and planning

Research Task 4: Developing Principles for the Co-
Design of Computing Hardware and Algorithms for
Low-energy Robot Perception

Research Task 5: Systems Integration, ASIC
Fabrication, and Experimental Evaluation
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Decision making for
minimizing energy
in run time

An example integrated system for low-energy mobile robotic CPS

Sertac Karaman, Department of Aeronautics and Astronautics
Vivienne Sze, Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

CPS: Synergy: Collaborative Research: LEAR-CPS: Low-Energy computing for
Autonomous mobile Robotic CPS: A Hardware-and-Algorithms Co-design Approach
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WHERE DISCOVERIES BEGIN

Visual-Inertial Odometry on Chip

More info at

http://navion.mit.edu
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Technology 65nm CMOS

Supply

1V

Chip area (mm?) 4.0x5.0

Resol

ution

752x480

Core area(mm?) | 3.54x4.54

Camera rate

Logic gates 2,043 kgates | Keyframe rate

SRAM Average Power

VFE Frequency 62.5MHz | GOPS 10.5-59.1
BE Frequency 83.3 MHz | GFLOPS 1-5.7

A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient Visual-Inertial
Odometry Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on VLSI Circuits, June 2018.
Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An Algorithm-and-
Hardware Co-design Approach,” Robotics: Science and Systems (RSS), July 2017.

Information-theoretic Mapping

scan locations

Select candidate

Compute Shannon MI and

Where to scan?

choose best location

Mutual Information

Read Port 1

Occupancy
Map

Read Port 2

Arbiter

10 50 100

 Corel CPU core by 10x
35
FPGA mCPU
- 30
2
g >
| CoreN IS 20 17
5 15
a
2 10
(@]
()

Move to
location
and scan

Update
»] Occupancy
Map

Each FSMI core on FPGA faster than

32.9

200

Number of cells in a beam

Updated Map

isas ==a
HHE

Compute FSMI on more locations
reduce trajectory length

« 104

— 25x FSMI |
—— 1x FSMI

0 20

40 60 80 100 120
Trajectory length

Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for
information-theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
T. Henderson, V. Sze, S. Karaman, "An Efficient and Continuous Approach to Information-Theoretic Exploration,"
submitted to IEEE International Conference on Robotics and Automation (ICRA) 2020
S. Sudhakar, S. Karaman, V. Sze, "Balancing Actuation and Computing Energy in Motion Planning," submitted to
IEEE International Conference on Robotics and Automation (ICRA) 2020
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