
c

Leader: Defense Against Exploit-Based Denial-of-Service Attacks on Web Servers

-Dr. Jelena Mirkovic -Dr. Christophe Hauser

-Rajat Tandon -Haoda Wang -Nicolaas Weideman - Shushan Arakelyan -Dr. Genevieve Bartlett
Pl: Jelena
Mirkovic

PI: Christophe
Hauser

Exploit-based DoS attacks: exploit some vulnerability at the target application and are
effective at a low request rate (e.g., 100 requests/second)
Attack detection at the network level is very challenging

- Attacks consume little bandwidth and appear legitimate
Such attacks are usually mitigated piecemeal

- Custom-tailored defenses are proposed for each attack variant
- E.g., SlowLoris defenses, hash collision defenses, infinite recursion defenses

The common problems with custom tailored defenses are:
- Low portability to other applications and attacks
- Low chance of adoption

Connection Life Stages
- For each connection, Leader builds

- a fine-grained pattern of resource consumption
- by each service as it processes each request,

- We use the tuple <thread id, process id> to uniquely identify a given external
(incoming) connection to the application

- We then link this tuple to the source IP address and source port of the
external client

- A connection’s life stage corresponds to a function call of:
- net/socket.c and the resource usage
- (e.g: CPU cycles, page faults, file descriptors and memory) per call

- Therefore, Leader is aimed to be application and attack agnostic

Funded by NSF SaTC award # 1815495 https://steel.isi.edu/Projects/Leader/

Information Sciences Institute,
University of Southern California

Sample legitimate and attack connection life stages.

Leader is an application-agnostic and attack-agnostic defense

It monitors all external requests for running services at the end host

During normal operations, Leader learns how each application’s requests
use host resources and builds baseline models per application

- Continuously, Leader builds instantaneous profiles of how each request
uses host resources
- Compares them to baseline models
- Deviations signal attacks, which Leader blocks

Behavior Profiling

Attack Detection

CPU cycles

times called

memory

call duration

file descriptors

page faults

c

Connection Life Stages
Each life stage pattern is a snapshot of the function call sequence and
resource usages until the given moment in time.

The red lines show the transitions that differ in duration or frequency
between an attack and a legitimate connection.

Different attacks may follow different sequences and consume different
amount of resources at different stages.

Leader’s Operation: Learning and Classification

Resource usage by the the different stages of a sample legitimate and a sample attack connection

Design scenarios and results

Liberal design
- Assumes that each anomalous connection is attack connection
- Ensures fast decision time but if there are any errors in classification, a legitimate source

may become blocked by the module
Conservative design

- Requires that a source receives some fraction of anomalous conn. classifications before
being blocked
- Reduces misclassification of legitimate sources, at the expense of longer decision time
- We use ROC curves to calibrate our conservative design

Leader: Experimental Setup

• Server:
• Mirrored websites—Imgur (Apache2), Wikipedia (Nginx)
• Added Web pages with vulnerabilities on these sites
• Crafted an implementation of a vulnerable Web application in Flask

• Legitimate traffic:
• MTurk study to gather training data for learning the baseline models
• Legitimate clients replay requests from logs in a congestion-

responsive manner
• Multiplex multiple source IPs on a single physical machine
• Emulate 100 clients being active simultaneously

Slowloris (SL): uses partial HTTP requests to open connections between the
attacker and the Web server for as long as possible.

Hash Collision (HC): uses Web requests with colliding keys, thus dramatically
slowing down the server.

Regular Expression Denial of Service (ReDoS): creates inputs that take
inordinately long time to process regular expressions.

preg_replace() PHP Function Exploitation (PHPEx): preg_replace(), PHP
function, can lead to a remote code execution if the Web application passes
user input to it and if that input includes executable PHP code.

Infinite recursive calls denial of service (IRC): Passing a PHP file as an
argument to itself can in some cases lead to infinite recursive call.

Maliciously Crafted URL Attack on a Flask Application (MCU): exploit
URL parameters to generate hundreds of times larger return values than those
of legitimate requests.

Attack Scenarios

sunshine@isi.edu hauser@isi.edu

bartlett@isi.edushushana@usc.edunweidema@usc.eduhaodawan@usc.edurajattan@usc.edu

