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Improve scalability and heterogeneity of robot 
behaviors and environments.
Learn models for adapting the representation 
of the environments for efficient robot motion 
planning.
Develop algorithms for extracting succinct 
representation from multi-modal interactions.

Robots need models that provide detail relevant to 
specific tasks and environments.
Minimal but sufficient representations enable efficient 
mapping, planning and reasoning for mobile manipulation.
Designing minimal representations is task-specific, may 
vary over time, and may require input from multiple 
different sensing modalities.

Developed predictive algorithm 
for optimizing local trajectory 
libraries to improve relative 
optimality of mobile robot 
navigation in complex 
environments (Fig. 1).  
Demonstrated effectiveness of 
learning optimized 
representations of graph 
connectivity for improving path 
search.

Fig.1. Local mobile robot motion planning with 
two-dimensional and three-dimensional 

environments [1]
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Predictively Adaptive 
State Lattices

Adapted DCG [2] to infer 
affordances between objects in a 
joint model that extracts rich 
representations from language 
and vision (Fig. 3).

Fig.3. Fusing natural language descriptions with 
learned models from visual perception

Articulated Models from 
Vision & Language

Information in the utterance can be 
leveraged to infer task specific 
configurations of the perception 
pipeline leading to task adaptive world 
model inferences. DCG [2] is adapted 
to learn salient visual detectors for 
robot manipulation tasks in a table-top 
scenario [4] (Fig. 4). Experimental 
results show that inferring task 
adaptive representations (Fig. 4) 
improves run-time of both perception 
and symbol grounding.

Language-guided 
Adaptive Perception (AP)

Learning Adaptive Representations for Robust Mobile 
Robot Navigation from Multi-Modal Interactions
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Fig. 3 Our multimodal articulation learning framework first identifies clusters of visual
features that correspond to individual object parts. It then uses these feature trajectories
to estimate the model parameters, assuming an initial estimate of the kinematic type asso-
ciated with each edge in the graph. The method grounds natural language descriptions of
the motion to their corresponding referents in the kinematic model and parameters through
a probabilistic language model, visualized as a factor graph. The vision and language ob-
servations are then fused to learn a distribution over the object’s kinematic model.

gram [49]. This includes work for such tasks as image and video caption
synthesis [8, 21, 35, 42, 46, 50], large-vocabulary object retrieval [13], visual
coreference resolution [26, 39], and visual question-answering [2]. Particularly
related to our work are methods that use instructional videos paired with
language (text or speech) for weakly supervised learning [29, 52], extracting
procedural knowledge [41], and identifying manipulating actions [1, 44].

3 Multimodal Learning Framework

Given an RGB-D video paired with the corresponding natural language de-
scription (alternatively, an instruction or caption) of an articulated object’s
motion, our goal is to infer the structure and parameters of the object’s
kinematic model. Adopting the formulation proposed by Sturm et al [43],
we represent this model as a graph, where each vertex denotes a di↵erent
part of the object (or the stationary background) and edges denote the ex-
istence of constrained motion (e.g., a linkage) between two parts (Fig. 2).
More formally, we estimate a kinematic graph G = (VG, EG) that consists
of vertices VG for each object part and edges EG ⇢ VG ⇥ VG between parts
whose relative motion is kinematically constrained. Associated with each edge
(ij) 2 EG is its kinematic type Mij 2 {rotational, prismatic, rigid} as well as
the corresponding parameters ✓ij , such as the axis of rotation and the range
of motion (see Fig. 3, lower-right). We take as input vision Dv and language
Dl observations of the type and parameters of the edges in the graph. Our
method then uses this vision-language observation pair Dz = {Dv, Dl} to
infer the maximum a posteriori kinematic structure and model parameters
that constitute the kinematic graph:
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Fig. 4 The DCG for the utterance “a man opens and closes the cabinet drawers” con-
structed from the parse tree illustrated in Figure 3. This model enumerates all possible
groundings for each phrase and performs inference by searching over unknown correspon-
dences. The expressed groundings (groundings for factors with True-valued correspon-
dence variables) of factors connected to �0 are used as language-based observations that
are fused with the visual observation. In this example, the model infers a “prismatic”
relationship between objects of semantic classes “cabinet” and ”door”.

3.3 Combining Vision and Language Observations

The final step in our framework selects the kinematic graph structure M̂ =
{M̂ij , 8(ij) 2 EG} that best explains the vision and language observations
Dz = {Dv, Dl} from the space of all possible kinematic graphs. We do so
by maximizing the conditional posterior over the model type associated with
each edge in the graph (ij) 2 EG:

M̂ij = arg max
Mij

p(Mij |Dz) (5a)

= arg max
Mij

Z
p(Mij , ✓ij |Dz)d✓ij (5b)

Evaluating this likelihood is computationally prohibitive, so we use the
Bayesian Information Criterion (BIC) score as an approximation

BIC(Mij) = �2 log p(Dz|Mij , ✓̂ij) + k log n, (6)

where ✓̂ij is the maximum likelihood parameter estimate (Eqn. 2), k is the
number of parameters of the current model and n is the number of vision
and language observations. We choose the model with the lowest BIC score

M̂ij = arg min
Mij

BIC(Mij) (7)

as that which specifies the kinematics of the object.

Fig.2. Distributed Correspondence Graph for 
inferring affordance relationships between 

pairwise objects

Fig.4. On the left is the physical environment for 
adaptive perception pipeline experiment. On the right 
is a representation extracted for “pick up the nearest 
red object” (top), while the graph (bottom) shows the 

gain in perception run-time for both adaptive and 
exhaustive modalities. 

Compact Representations via 
Observations Filtering and AP

Model improves accuracy over 
vision-only based models [3] and 
demonstrates ability to extract 
affordance and object information 
from multi-modal interactions in a 
manipulation-based domain.

Fig.5. On the left are the inferred scene semantics, On the right 
is the compact representation extracted for “drive to the 

nearest ball in the lab”.

Inferring Compact Representations for Efficient Natural Language
Understanding of Robot Instructions

Siddharth Patki Andrea F. Daniele Matthew R. Walter Thomas M. Howard

Abstract— The speed and accuracy with which robots are

able to interpret natural language is fundamental to realizing

effective human-robot interaction. A great deal of attention

has been paid to developing models and approximate inference

algorithms that improve the efficiency of language understand-

ing. However, existing methods still attempt to reason over a

representation of the environment that is flat and unnecessarily

detailed, which limits scalability. An open problem is then

to develop methods capable of producing the most compact

environment model sufficient for accurate and efficient natural

language understanding. We propose a model and algorithm

that leverage environment information encoded within the in-

structions to identify the subset of observations and perceptual

classifiers necessary to perceive a succinct, instruction-specific

environment representation. The framework uses three proba-

bilistic graphical models trained from a corpus of annotated in-

structions to infer salient scene semantics, perceptual classifiers,

and grounded symbols from language, a set of observations,

and a set of perceptual classifiers. Experimental results on twoMW: The
last bit “a
set of ob-
servations
. . . ” reads
awkwardly.
Run-on?

MW: The
last bit “a
set of ob-
servations
. . . ” reads
awkwardly.
Run-on?

robots operating in different environments demonstrate that

by exploiting the content and structure of the instructions,

our method learns compact environment representations that

significantly improve the efficiency of natural language symbol

grounding.

I. INTRODUCTION

The ability for robots to perform complex tasks is inher-
ently linked to the richness of their environment models.
Advances in sensor technology, machine perception, and
natural language understanding provide a wealth of data that
can be infused into these models. These innovations raise
new questions with regards to how to assimilate, manage,
and utilize this abundance of knowledge. A fundamental
problem is how to reason over this rich information in a
manner that enables robots to efficiently plan in diverse
environments of varying scales and complexities. Consider
a human-robot teaming example illustrated in Figure 1,
where a user instructs the mobile robot operating to “nav-
igate to the nearest red ball” If we assume that the robot
has access to knowledge bases (e.g., campus-level maps)
and various sensor measurements (e.g., images, laser scans,
and audio) that it has accumulated over time, the problem
becomes one of situating or “grounding” the instruction
in the context of the perceived environment. With a few
exceptions [1–5], contemporary methods attempt to fuse this
disparate information into a single, flat representation of
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(a) a mobile robot receiving a natural language instruction

(b) complete world model (c) approximate world model

Fig. 1. Our framework learns to build a minimal representation of the
environment that is necessary and sufficient to interpret a given natural lan-
guage instruction. Here we illustrate a mobile robot receiving the instruction
“navigate to the nearest ball in the lab” (a). (b) shows an exhaustive world
model, and (c) shows a compact world model inferred to facilitate symbol
grounding of the given interaction.

the environment (i.e., the “world model”) that expresses all
metric [6–12] as well as semantic [4, 5, 13–16] knowledge
gleaned from these observations to construct a representation
sufficient for natural language symbol grounding. There are
two fundamental limitations to this approach.

AD: this following sentence seems wrong, it should be either: “reasoning over ...
is expensive,”, or “a high fidelity model ... is expensive to compute and store”

First, reasoning over all available information to generate
a high fidelity model of the environment is expensive to
compute and store, risks the consistency of the estimator,
and is computationally prohibitive to search in the context
of both planning and natural language understanding [17–
19]. More generally, it is unnecessarily detailed for most
tasks. Ideally, one would reason over the most compact
representation of the environment necessary to understand
the instruction, however this representation is generally not
known until after the instruction is received. Second, in situa-
tions where concepts are taught or evolve in-situ from human
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Fig. 1. Our framework learns to build a minimal representation of the
environment that is necessary and sufficient to interpret a given natural lan-
guage instruction. Here we illustrate a mobile robot receiving the instruction
“navigate to the nearest ball in the lab” (a). (b) shows an exhaustive world
model, and (c) shows a compact world model inferred to facilitate symbol
grounding of the given interaction.
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gleaned from these observations to construct a representation
sufficient for natural language symbol grounding. There are
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compute and store, risks the consistency of the estimator,
and is computationally prohibitive to search in the context
of both planning and natural language understanding [17–
19]. More generally, it is unnecessarily detailed for most
tasks. Ideally, one would reason over the most compact
representation of the environment necessary to understand
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Fig. 6.  The robot on the left is instructed to “navigate to the 
nearest ball in the lab”.  The image on the right shows a compact 
world model inferred to facilitate grounding of the instruction.

Environment information encoded within the 
instructions can be exploited to further narrow 
the set of task-relevant observations. To achieve 
this, three probabilistic graphical models trained 
from a corpus of annotated instructions infer 
salient scene semantics, perceptual classifiers, 
and grounded symbols from language [5].

Language-guided Semantic Mapping and Mobile 
Manipulation in Partially Observable Environments 
Our framework learns to exploit environment and task-related information implicit in 
a given utterance to ground instructions in partially observed environments. Traditional 
approaches to language grounding involve reasoning over a highly detailed model of 
the environment that is assumed to be known at the time of utterance and is 
computationally expensive to maintain. Our approach [6] learns to reason over a 
distribution of compact maps that model only task-relevant objects by adapting 
perception based on the instruction as in [4,5] but also exploits spatial relationships 
expressed in the utterance to inform the sampled poses of unobserved objects.

Fig.7.  On the left is a robot instructed to “retrieve the ball from the box” in a priori unknown environment.  Middle image 
shows a highly detailed world model that is unavailable for unknown environments and is computationally expensive to 

maintain. On the right is the inferred distribution of compact maps generated by adapting perception to selectively model 
task relevant objects. The circles show the distribution of possible locations of the boxes containing a ball.

Work on adaptive perception has primarily focused on generating 
minimal world representations for efficient symbol grounding. Planning 
and control algorithms put additional constraints on minimal 
representations as relations between objects or their affordances may 
need to be modeled to select and execute suitable actions. To begin 
exploring this space, we introduced a novel symbolic representation that 
selectively represents single-layer hierarchies between object detectors 
in adaptive perception pipelines [4,5,6] for mobile manipulation [7].

Fig. 8.  Experiments in the environment on the left involved commands "go to the door" and "open the 
door".  We demonstrated that using the proposed symbol set, adaptive perception could selectively 
represent hierarchies between object detectors by learning to condition the inference on the verb in 
the sentence. In these experiments the “open the door" task inferred door and door handle detectors.

Adaptive Perception with Hierarchical Symbolic 
Representations for Mobile Manipulators


