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Transportation systems are by definition Cyberphysical Systems, because they require a tight
connection between the computational algorithms and the physical system to result in safe,
reliable and efficient operation. Air traffic management is a particular example of such a sys-
tem, where problems range from long term optimization (route selection), to scheduling (gate
assignments), to human-agent interaction (air traffic controller and automation), to dynamic
coordination (re-routing due to weather), to minute by minute control (separation assurance).
Though each problem is complex in its own right, their combination leads to a truly congested
system, one where over the US airspace alone, 87,000 flights need to be managed daily.

To address this congestion problem, we need to determine how to increase the capacity of our
airspace while retaining the stellar safety record of air traffic systems. Indeed, it is critical
to note that current regulations and procedures have resulted in air traffic systems to attain
an unprecedented safety record. Yet, these regulations are also partly responsible for the
congestion and delays that not only cost the industry billions of dollars every year, but get
worse every year as the demand for air travel increases. The key observation that makes this
problem ripe for a cyberphysical systems solution is that congestion is at least partially caused
by how we use the airspace, inviting computational tools to increase air space capacity, with
little to no physical expansion of the system.

In this position paper, we focus on the use of learning agents in the airspace and determine
how such agents can both alleviate congestion and help humans make more informed deci-
sions [4, 13]. But for learning agents to be accepted as part of the national airspace, the
following three challenges need to be addressed:

1. The role of computational agents in air traffic;

2. The coordination of a large number of computational agents; and

3. The impact of the highly dynamic (including human decisions) environment on agent
performance.

1. Role of Computational Agents in Air Traffic: There are two high level ways in
which the roles of learning agents can be viewed in transportation systems. The first, and
more ‘natural” approach, is to identify system components (aircraft, controller, airport) with
computational agents. The agents then learn the same actions that are currently performed
by those entities, and use learning methods to develop policies that lead to desirable system
behavior. The second, and more abstract approach, is to introduce learning agents in the
system to shape the behavior of the “natural” entities in the system. An example of the
first approach is to identify each aircraft with an agent [1, 4, 11]. An example of the second
approach is to introduce agents that can restrict access to certain parts of the airspace, force
ground holds, or set miles in trail for the aircraft.

The air traffic domain is well-suited for the second approach, because the introduction of
learning agents does not directly conflict with well-defined human roles. In this respect, such
agents are there to help humans make better decisions. But when new agents are introduced
into the system, it becomes critical to ensure that those agents’ objectives and purpose are



selected in a way that does not create unintended conflicts in the agent-agent and agent-human
interactions [2, 5, 6]. That topic leads us to the second challenge.

2. Coordination of a large number of computational agents: Ensuring coordination
among thousands of agents is a critical research issue that arises when many agents are inserted
into the system. Not only do the decisions of these agents need to be understandable by a
human operator (pilot, controller), they also need to support system level objectives (increase
safety, reduce congestions, reduce delay) [3, 7]. This is a particularly key step when the agents
are adaptive (such as reinforcement learning agents). It is imperative to derive objective
functions for the agents in such a way that when each agent achieves its own objective, the
system behaves in the desired manner [2, 8, 9].

Though there have been many recent results in coordination [3, 11, 13], acceptance of learning
in the air traffic domain requires those results to scale to thousands of agents, to handle
heterogeneous agents, and to operate when agents have limited information about the state
of the system. Finally, this coordination must occur in a highly dynamic environment where
the “best” decisions will vary greatly based on the decisions of other agents (both human and
computational), which leads us to the third challenge.

3. Operation in highly dynamic environments: Handling highly dynamic environ-
ments where the best action not only depends on events occurring outside an agent’s purview
(weather, equipment problems, human decisions), but also changes rapidly, is the third chal-
lenge that arises in air traffic control [3, 10, 12]. The agents’ policies and decisions need to be
robust both to small variations caused by fluctuations in normal aircraft operation (re-routes,
gate assignments) and to large variations caused by unexpected external factors (weather).

Many learning algorithms rely on the stationarity of the environment to provide guarantees
of performance that do not apply to multiagent learning. Yet, in many multiagent settings,
the environment changes slowly enough that single agent learning algorithms are effective [13].
But in highly dynamic environments, it is critical to explore new methods that can not only
ensure the agents are learning the right behaviors, but also provide guarantees that they will
do so while remaining within the specified safety bounds (possibly set to ensure understanding
by human operators).

Conclusion: Each of these directions is critical to the success of cyberphysical systems pro-
viding implementable solutions to the air traffic management problem. But from a broader
perspective, they are critical challenges to any transportation system. For example, though the
specifics are different for the acceptance of autonomous vehicles in our roadways, and the role
of autonomous vehicles more directly overlap with those of drivers, the remaining challenges
are similar: those systems must also address the coordination of a large number of computa-
tional agents, the operation in highly dynamic environments, and the integration of human
drivers and autonomous vehicles.

These critical challenges highlight that what is critical for the adoption of learning agents in
transportation systems is not just designing better algorithms. It is to find the right insertion
points of the agents into the system, and to make sure we focus on “what” the agents learn,
rather than “how” they learn. Only when computational agents provide safer and more efficient
transportation systems, can we expect them to be deployed in everyday operation.
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