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Learning 1s becoming an integral part of many
cyberphysical systems:

Introduction
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* Lots of uncertainty 1n the system, especially with
respect to human users

* Physical constraints must be respected

Challenges:

* Systems needs to be learned quickly and
efficiently

* Humans in the loop: time-varying and uncertain

* Labeling data 1s often expensive

 Small data: limited number of trials, often under
high-dimensional settings

* Data arrives 1n sequential fashion

Approaches:

* Strategically make use of limited data

* Carefully designed algorithms: learn what 1s
possible

* Use ”direct” algorithm when appropriate: bypass

fitting an explicit model then optimizing

* Use online algorithms which can offer surprising
performances

* Evaluate on real system and real data when
possible

* (Compare against offline optimal solutions

Students and Postdocs:

* Pan L1, Chase Dowling, Hao Wang

/ Learning Customers’ Costs \

* Demand response 1s an important tool used to
the utilities to balance load and generation

o [Utilities often do not have direct load control and
do not know the cost function of the users

Objective: Learn the correct price signals to send
under limited number of signals

Operator’s Problem

e N users, with consumption x;
* Operator has a target consumption Y;

e Want to minimize
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where the first term 1s the (negative) profit from
demand response and the second term 1s the
mismatch between the user response and the target

User’s Response

* User has cost: .
ci(;) = 552-(:1;2)2 + ayz;
 Receilves a payment of A, so user 1 solves
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* Noisy response:
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Online Learning

* The operators tries to solve
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e The dual Variable A, is the right price

* Operator updates its estimate of the users’
parameters

* Only the aggregate 1s needed

/ Voltage Control \

* Voltage control plays an important role in the
operation of power systems

* High penetration of distributed energy resources
and users behaviors introduce fast varying
uncertainties

Objective: Ensure reliable operation under these
uncertainties using chance constraints

Power Flow Model

* @Given a distribution network, consider the
Linear DistFlow model:

V =RP + XQ
where V 1s the voltage, P 1s the active power, Q
1s the reactive power, R and X are constant matrices

* The active power P 1s uncertain: randomness in

renewables and user behaviors
V =RP + XQ + €

Chance Constraints

* Control Q to ensure that voltages are safe

min f(Q)

Pr(V<RP+XQ+e<V) >0

* The components of € are highly correlated and
the chance constraint is intractable even for

Gaussian

Sample-Based Descent Algorithm

* Use a log-barrier function to convert to an
unconstrained problem:
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Online Learning:
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Results

Optimal regret as the offline optimal algorithm

Voltage Control:
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Much more efficient than integer programming
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9\(Q) = f(Q) = Nog (8 —Pr (V< RP+XQ+e<V))
 Find a descent direction:

_9(Q+4-e) Q)
A

e

where e 1s a random direction and A = 0
* With prob. 1, -p a descent direction

* The optimization problem can be shown to be
convex for log-concave distributions

* The problem can be solved to optimal by just
using historical data (without explicitly
modeling the distribution)

BB Algo. 1
Running time (seconds) 710 38
Empirical risk level 9.00% | 8.97T%
Q|2 (p.u) 0.0083 | 0.0086
Most sensitive bus 104 104
Number of buses with non-trivial 41 41
reactive power support
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