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Deep shared autonomy vision

assistive control for tasks of daily living

Algorithmic foundations

Experimental evaluation

• Algorithms for inverse reinforcement learning: inferring the goals of 
the human from observing their behavior

• Imitation learning: learning how to perform a task from observing 
human behavior, even when it differs in terms of embodiment or 
capability

• Shared autonomy: learning how to perform a task together with a 
person

• Robot-assisted feeding

Basic challenges
• Intent: robot must understand 

what the person is trying to do
• Assistance: robot must offer 

assistance in a way that is 
natural and maintains human 
control

• Perception: robot must be able 
to perceive objects in the world 
from its on-board sensors



Solo Human Pilot
Knows intent, suboptimal ability

Autonomous Robotic Pilot
Doesn’t know intent, near-optimal ability

Shared Autonomy:
Human Pilot + Robotic Copilot
Knows intent, near-optimal ability
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Shared Autonomy via Deep Reinforcement Learning
Siddharth Reddy, Anca D. Dragan, Sergey Levine

Augmenting human control with deep Q-learning
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Augmenting human control with deep Q-learning



action

state

Policy: 
closest action 
with high enough value

input

Q network

+

Shared Autonomy via Deep Reinforcement Learning
Siddharth Reddy, Anca D. Dragan, Sergey Levine

Augmenting human control with deep Q-learning



action

state

Reward 
function

Internal 
dynamics model

action

state

Where Do You Think You’re Going?: Inferring Beliefs about Dynamics from Behavior
Siddharth Reddy, Anca D. Dragan, Sergey Levine

Inferring beliefs about dynamics from behavior



Demonstrations Demonstrator’s 
internal dynamics model

Our learning algorithm
• Training time: learning from demonstrations

• Test time: shared autonomy via internal-to-real dynamics transfer

Where Do You Think You’re Going?: Inferring Beliefs about Dynamics from Behavior
Siddharth Reddy, Anca D. Dragan, Sergey Levine

Inferring beliefs about dynamics from behavior



Do we need the entire demonstration to infer the goal?

“what” & “how”

“what”

Xie, Singh, Levine, Finn ‘18



Xie, Singh, Levine, Finn ‘18

given 5 examples of 
success

using the classifier as 
reward for control



demonstration testing



Robot-assisted feeding
High-level goal: Enabling an assistive robot to feed a person with upper extremity disabilities

High-impact task: 
• An activity of daily living (ADL) 
• 56.7 million people had disability (Brault, 2012) 
• 12.3 million people needed assistance with ADLs (Perry, 

2008)

bite acquisition bite transfer

Problem decomposition:
• Bite acquisition: food 

perception, manipulating 
deformable objects

• Timing for bite transfer: 
understanding the cadence of 
social dining



The robotic system uses multimodal sensing to acquire food and transfer it 
using different food item-dependent manipulation primitives

Robot-Assisted Feeding



Timing for bite transfer

• Features such as gaze direction (speaker or plate), conversation, mouth 
(closed or open), and time since last bite are informative of bite timing

• Represented as a state-transition model
• More states than bite acquisition and eating, e.g., people waiting with 

full fork vs. empty fork
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