

Broader Impact

Critical to many robotic manipulation tasks:

- Surgical assistive robots: tissue and organs
- Home-assistance robots: sponges, clothes, food, etc.
- Warehouse robots: containers, boxes, etc.
- Safe automated productions lines for deformable products.

Surgical Application

Surgical retraction task: grasping a tissue layer and lifting it up to expose the underlying area of a kidney.

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022

- dim feature vector from partialview point cloud using PointConv
- Deformation control: compute end effector displacement given difference of current and target features
- \succ We train on random size and stiffness instances of these shapes

Manipulation Point Prediction

- > Where to grasp when performing shape control?
- > Insight: points on the object that move more should generally be close to the grasp point
- Manipulation point = displacement-weighted average of keypoints matched between initial and target shape.

[Bao Thach, Brian Y. Cho, Alan Kuntz, & Tucker Hermans. *ICRA* 2022]

Experiments **Quantitative Results**

- > In simulation, use dVRK surgical robot to manipulate a variety of object geometries and stiffnesses.
- \triangleright Evaluate performance in 2 categories: objects inside and outside the training distributions

 \succ On real robot, evaluate with a foam box object. **Qualitative Results**

Goal-oriented shape servoing

Surgical retraction task

Award ID#: 2024778

