Learning to Walk - Optimal Gait Synthesis and Online Learning for Terrain-Aware Legged Locomotion

Aaron Ames¹ (MCE), Daniel Goldman² (PHYS), Patricio Vela² (ECE), Erik Verriest² (ECE)

- ¹ California Institute of Technology
- ² Georgia Institute of Technology

CPS GOAL

Advance CPS by more explicitly tying sensing, perception, and computing to the optimization and control of physical systems with variable and uncertain properties.

RESEARCH GOAL

Improve the perception and control of legged locomotion over granular media for the express purpose of achieving robust, adaptive, terrainaware legged locomotion.

OBJECTIVES

- Validated co-simulation platform for legged robot movement over granular media;
- Terrain-dependent, stabile gait generation and gait transition strategies via optimal control;
- Online, compute-constrained learning of granular interactions for adaptation and terrain classifications; and
- Validated contributions using experimental, granular-media testbeds
- Communicate value of STEM education.

Task2: Derive dynamics and gait controller,

 $\dot{x} = f(x(t), u(t)) + g_{ext}(x(t)) F_{ext}$ for multiple terrain types and for gait transitions.

Task 1: Experimentally derive granular force laws for modeling F_{ext} through Task 3: Learn terrain models controlled experiments.

 (F_{ext}) online. Classify terrain based on experienced models.

Task 4: Integrate and validate research contributions.

SCIENTIFIC VALUE

- Uncertain dynamics and external forces/disturbances are common to all controlled systems.
- Research defines, proves, and validates a process for integrating learning and adaptation for improving close loop performance and fidelity of trajectory synthesis during task execution.

BROADER IMPACTS

- Enhances and improves robustness of robotic and control systems so that real-world operation possible. Large class of automated systems with societal benefit impacted.
- Robotic platforms used to promote and attract youth to engineering.

Online Classification, Knowledge Transfer, and Learning of Terrain Forces

OBJECTIVE: ENHANCED OPERATION AND LEARNING THROUGH MEMORY OF LEARNT MODELS.

- Start with general models from prior experiences with different terrain.
- Classify new terrain experience using models from prior experiences.
- Employ prior knowledge within learning process

Prediction	Solid Ground	Trampoline	Granular	High classification rate (> 95%).
Solid ground	96.9%	0.7%	2.6%	 Prior knowledge enhances
Trampoline	0.0%	92.8%	0%	learning (50% or less hops).
Granular	3.1%	6.5%	97.4%	Even if misclassified (30% less).
No. Iterations	Control Low Shot	No. Iterations		ontrol ow Shot No. Iterations Remarks to the state of t

Gait Synthesis for Walking with Complex Legged Robots

OBJECTIVE: APPLY CONCEPTS TO NEW ROBOT WALKER, CASSIE.

- Employ reduced order model within numerical control and optimization routines.
- Map policies of reduced order model to original hybrid system.
- Demonstrate trajectory tracking using hybrid QP-CLF methods.

Optimal Transitions between Orbits

OBJECTIVE: ENLARGE SCOPE OF RACCORDATION THEORY

- Graceful transitions for controlled systems involving tracking of stable orbits.
- Applications: spherical pendulum and fully-actuated walking

Volume Fraction