Learning with Abandonment

Sven Schmit and Ramesh Johari, Stanford University (Presented at International Conference on Machine Learning, ICML 2018)

NSF CNS-1544548: CPS: Breakthrough: Collaborative Research: The Interweaving of Humans and Physical Systems: A Perspective From Power Systems; 10/01/2015-09/30/2019

{schmit, rjohari}@stanford.edu

Personalize at individual level

How does a platform learn a personalized policy for its users?

Motivation

- Demand response programs have a high abandonment rate.
- Once users leave, they are unlikely to return.
- Thus the platform is trying to optimize in the face of users that have a risk of abandonment.

Puzzle

- I drew a threshold θ uniformly between 0 and 100.
- You guess number x. If $x < \theta$, I pay you x and you can guess another number. If $x > \theta$, we stop.
- How can you maximize your discounted sum of rewards?

Model

- User characterized by thresholds θ_t drawn from the population distribution F (assume known)
- At discrete times t = 0, 1, ..., select action $x_t \in X$
- If $x_t < \theta_t$, obtain (random) reward $R_t(x_t)$ and continue, otherwise obtain no reward and process stops.

Objective

Let T be the first time $x_t > \theta_t$: $T = \min\{\tau : x_\tau > \theta_\tau\}$. The goal is to **maximize the expected sum of discounted rewards** up to time T:

$$x^* \in \arg\max_{\{x_t\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t R_t(x_t)\right]$$

Related work

- Abandonment: Lu et al. [2018]
- Mechanismd design and dynamic pricing: Myerson [1981]
- Demand estimation: Kleinberg and Leighton [2003]
- Safe reinforcement learning: Moldovan and Abbeel [2012], Berkenkamp et al. [2017]

One user

First, we focus on learning the preference of a **single user**. We need to impose additional structure to make the problem tractable.

Fixed threshold

Suppose $\theta_t = \theta$ is drawn once from a known threshold distribution F. Let $r(x) = \mathbb{E}(R_t(x_t)) > 0$, also assumed known.

Under minimal assumptions, the optimal policy is a constant policy.

Fixed threshold leads to constant policy

Suppose the function $f: x \to r(x)(1 - F(x))$ has a global optimum at x^* . Then, the optimal policy is $x_t = x^*$ for all t.

Intuition

Suppose optimal policy is increasing: $x_t = y$, $x_{t+1} = z > y$. Compare to $x_t = x_{t+1} = z$.

- $\theta < y$: identical outcome
- $\theta \ge y$: z is optimal, so $x_t = z$ is better than $x_t = y$

Corollary for simple model

For $\theta \sim U[0,1]$ and $R_t(x) = x$ the optimal policy is $x_t = 1/2$ for all t. Now consider $\theta \sim U[c,1]$ for any $c \in [0,1/2]$, then the optimal policy remains $x_t = 1/2$.

Independent thresholds

Consider the other extreme: θ_t drawn iid from F. This prohibits any learning across time, so again a **constant policy is optimal**.

Robustness

For more general models, **optimal policy is intractable**, but generally increasing.

Additive noise $\theta_t = \theta + \varepsilon_t$.

- Small noise If $\varepsilon_t \in [-y, y]$, then constant policy is approximately optimal (informal; see paper for details).
- Large noise If ε_t are independent, and variance is large, then constant policy is approximately optimal (informal; see paper for details).

Summary

Our results for the single user model can be summarized as follows.

Learning arcoss a population

So far, we have assumed that threshold distribution and reward function are **known**. What if we do not know these, but have a population of users to learn from?

Setting

- Users arrive sequentially
- User u has fixed threshold θ_u drawn from unknown distribution F
- Assumptions:
- -F has support [0,1]
- Rewards bounded in [0,1], r(x) unknown
- Profit function p(x) = r(x)(1 F(x)) is concave*

Regret

- Optimal action: $x^* \in \arg \max_{x} p(x)$
- Consider constant policies per user, one pull corresponds to lifetime rewards for one user
- regret $(n) = (1 \gamma)np(x^*) (1 \gamma)\sum_{u=1}^{n} p(x_u)$

Learning strategy

We follow the approach of Kleinberg and Leighton [2003].

- Discretize [0,1] into $K = O((n/\log n)^{1/4})$ points
- Run UCB [Auer et al., 2002] / KL-UCB [Garivier and Cappé, 2012] algorithm on discretized actions

Regret of UCB and KL-UCB policies

If p(x) = r(x)(1 - F(x)) satisfies a concavity condition, then UCB and KL-UCB algorithms uesing a discretized grid with $K = O((n/\log n)^{1/4})$ achieve $O(\sqrt{n\log n})$ regret.

Note: Kleinberg and Leighton [2003] provide $O(\sqrt{n})$ lower bound for constant policies that applies here as well, but dynamic policies could perform better.

Simulations

We include an optimistic benchmark: **explore-exploit** observes first m thresholds θ_u and thereafter selects the optimal action based on the empirical CDF and known reward function.

Take-away: possible gains possible with dynamic policies that learn more about individual thresholds θ_u .

Feedback

Key idea: user does not always abandon immediately.

In a demand response program:

- Suppose a user is unhappy with **platform's thermostat adjustment**.
- The first few times this happens, the user might just override the settings, rather than abandoning.
- But eventually, if the experience is negative too frequently, **the user** will abandon.

Augmenting the general model

User abandons after $m \sim \operatorname{Geometric}(p)$ violations of threshold.

That is, if $x_t > \theta$

- with probability p user abandons, process stops, and
- with probability 1-p, platform receives no reward, but process continues.

Feedback leads to partial learning

For any abandonment risk $0 \le p < 1$, the optimal policy partially learns about the user. That is, at a certain point the optimal policy becomes constant. (Informal)

Figure 1: Optimal policy for $\theta \sim U[0,1]$, r(x) = x, p = 1/2 and $\gamma = 0.9$. Note, this is also true for p = 0; when there is no risk of abandonment.

Aggressive and conservative policies

We define aggressive and conservative policies as follows:

- Aggressive policy: $x_0 > x_c^*$
- Conservative policy: $x_0 < x_c^*$

If $p\approx 1$ (high risk of abandonment), then optimal policy is **conservative**, provided γ is sufficiently large.

If $p \approx 0$ (low risk of abandonment), then optimal policy is **aggressive**.