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Personalize at individual level

How does a platform learn a personalized policy for its users?

Interact over time

Unhappy user 
leaves platform

Platform

User

Motivation
• Demand response programs have a high abandonment rate.

• Once users leave, they are unlikely to return.

• Thus the platform is trying to optimize in the face of users that have a
risk of abandonment.

Puzzle
• I drew a threshold θ uniformly between 0 and 100.

• You guess number x. If x < θ , I pay you $x and you can guess another
number. If x > θ , we stop.

• How can you maximize your discounted sum of rewards?

Model

• User characterized by thresholds θt drawn from the population distribu-
tion F (assume known)

• At discrete times t = 0,1, . . ., select action xt ∈ X
• If xt < θt, obtain (random) reward Rt(xt) and continue, otherwise obtain

no reward and process stops.

Objective
Let T be the first time xt > θt: T = min{τ : xτ > θτ}. The goal is to
maximize the expected sum of discounted rewards up to time T :

x∗ ∈ arg max
{xt}∞t=0

E

[
T−1

∑
t=0

γ
tRt(xt)

]

Related work

• Abandonment: Lu et al. [2018]

• Mechanismd design and dynamic pricing: Myerson [1981]

• Demand estimation: Kleinberg and Leighton [2003]

• Safe reinforcement learning: Moldovan and Abbeel [2012], Berkenkamp
et al. [2017]

One user

First, we focus on learning the preference of a single user. We need to
impose additional structure to make the problem tractable.

Fixed threshold
Suppose θt = θ is drawn once from a known threshold distribution F . Let
r(x) = E(Rt(xt))> 0, also assumed known.

Under minimal assumptions, the optimal policy is a constant policy.

Fixed threshold leads to constant policy

Suppose the function f : x→ r(x)(1−F(x)) has a global optimum
at x∗. Then, the optimal policy is xt = x∗ for all t.

Intuition

Suppose optimal policy is increasing: xt = y, xt+1 = z > y. Compare to
xt = xt+1 = z.

• θ < y: identical outcome

• θ ≥ y: z is optimal, so xt = z is better than xt = y

Corollary for simple model

For θ ∼U [0,1] and Rt(x) = x the optimal policy is xt = 1/2 for all t.
Now consider θ ∼ U [c,1] for any c ∈ [0,1/2], then the optimal policy
remains xt = 1/2.

Independent thresholds
Consider the other extreme: θt drawn iid from F . This prohibits any
learning across time, so again a constant policy is optimal.

Robustness
For more general models, optimal policy is intractable, but generally
increasing.

Additive noise θt = θ + εt.

• Small noise If εt ∈ [−y,y], then constant policy is approximately opti-
mal (informal; see paper for details).

• Large noise If εt are independent, and variance is large, then constant
policy is approximately optimal (informal; see paper for details).

Summary
Our results for the single user model can be summarized as follows.
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threshold
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Constant policy 
close to optimal

Constant policy 
is optimal

Constant policy 
close to optimal

Optimal policy 
is increasing & intractable

θt = θ + ϵt

ϵt ∈ [−y, y] ≈ Var(ϵt) > Var(θ)
no independence assumption

Learning arcoss a population

So far, we have assumed that threshold distribution and reward function
are known. What if we do not know these, but have a population of users
to learn from?

Setting
• Users arrive sequentially

• User u has fixed threshold θu drawn from unknown distribution F
• Assumptions:

– F has support [0,1]
– Rewards bounded in [0,1], r(x) unknown

– Profit function p(x) = r(x)(1−F(x)) is concave*

Regret

• Optimal action: x∗ ∈ argmaxx p(x)
• Consider constant policies per user, one pull corresponds to lifetime

rewards for one user

• regret(n) = (1− γ)np(x∗)− (1− γ)∑
n
u=1 p(xu)

Learning strategy
We follow the approach of Kleinberg and Leighton [2003].

• Discretize [0,1] into K = O((n/ logn)1/4) points

• Run UCB [Auer et al., 2002] / KL-UCB [Garivier and Cappé, 2012]
algorithm on discretized actions

Regret of UCB and KL-UCB policies

If p(x) = r(x)(1 − F(x)) satisfies a concavity condition, then
UCB and KL-UCB algorithms uesing a discretized grid with K =
O((n/ logn)1/4) achieve O(

√
n logn) regret.

Note: Kleinberg and Leighton [2003] provide O(
√

n) lower bound for
constant policies that applies here as well, but dynamic policies could
perform better.

Simulations
We include an optimistic benchmark: explore-exploit observes first m
thresholds θu and thereafter selects the optimal action based on the
empirical CDF and known reward function.
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Take-away: possible gains possible with dynamic policies that learn more
about individual thresholds θu.

Feedback

Key idea: user does not always abandon immediately.

In a demand response program:

• Suppose a user is unhappy with platform’s thermostat adjustment.

• The first few times this happens, the user might just override the
settings, rather than abandoning.

• But eventually, if the experience is negative too frequently, the user
will abandon.

Augmenting the general model
User abandons after m∼ Geometric(p) violations of threshold.

That is, if xt > θ

• with probability p user abandons, process stops, and

• with probability 1− p, platform receives no reward, but process contin-
ues.

Feedback leads to partial learning

For any abandonment risk 0 ≤ p < 1, the optimal policy partially
learns about the user. That is, at a certain point the optimal policy
becomes constant. (Informal)
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Visualization of the optimal policy tree

Figure 1: Optimal policy for θ ∼U [0,1], r(x) = x, p = 1/2 and γ = 0.9.

Note, this is also true for p = 0; when there is no risk of abandonment.

Aggressive and conservative policies
We define aggressive and conservative policies as follows:

• Aggressive policy: x0 > x∗c
• Conservative policy: x0 < x∗c
If p≈ 1 (high risk of abandonment), then optimal policy is conservative,
provided γ is sufficiently large.

If p≈ 0 (low risk of abandonment), then optimal policy is aggressive.


