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Personalize at individual level

How does a platform learn a personalized policy for its users?
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Motivation

e Demand response programs have a high abandonment rate.
e Once users leave, they are unlikely to return.

e Thus the platform is trying to optimize in the face of users that have a
risk of abandonment.

Puzzle

e | drew a threshold 0 uniformly between 0 and 100.

e You guess number x. If x < 8, | pay you $x and you can guess another
number. If x > 6, we stop.

e How can you maximize your discounted sum of rewards?

Model

e User characterized by thresholds 6, drawn from the population distribu-
tion F' (assume known)

e Atdiscretetimest =0,1,..., select action x; € X

e If x, < 6,, obtain (random) reward R, (x;) and continue, otherwise obtain
no reward and process stops.

Objective

Let T be the first time x, > 6,; T = min{7 : x; > 6;}. The goal is to
maximize the expected sum of discounted rewards up to time 7':
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Related work

e Abandonment: Lu et al. [2018]
e Mechanismd design and dynamic pricing: Myerson [1981]
e Demand estimation: Kleinberg and Leighton [2003]

e Safe reinforcement learning: Moldovan and Abbeel [2012], Berkenkamp
et al. [2017]

One user

First, we focus on learning the preference of a single user. We need to
Impose additional structure to make the problem tractable.

Fixed threshold

Suppose 6, = 0 is drawn once from a known threshold distribution F'. Let
r(x) =E(R,(x;)) > 0, also assumed known.

Under minimal assumptions, the optimal policy is a constant policy.

Fixed threshold leads to constant policy

Suppose the function f: x — r(x)(1 — F(x)) has a global optimum
at x*. Then, the optimal policy is x, = x* for all 7.

Intuition

Suppose optimal policy is increasing: x;, =y, x,.1 = z > y. Compare to
Xt = Xt+1 = <.

e O < y: identical outcome

e O > y: zisoptimal, so x;, = zis better than x, =y

Corollary for simple model
For 6 ~ U|0,1] and R,(x) = x the optimal policy is x, = 1/2 for all .

Now consider 8 ~ U|c, 1] for any ¢ € [0,1/2], then the optimal policy
remains x; = 1/2.

Independent thresholds

Consider the other extreme: 6, drawn iid from F. This prohibits any
learning across time, so again a constant policy is optimal.

Robustness

For more general models, optimal policy is intractable, but generally
Increasing.

Additive noise 6, = 0 + ¢,.

e Small noise If & € [—y,y|, then constant policy is approximately opti-
mal (informal; see paper for details).

e Large noise If & are independent, and variance is large, then constant
policy is approximately optimal (informal; see paper for details).

Summary

Our results for the single user model can be summarized as follows.
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Learning arcoss a population

T

So far, we have assumed that threshold distribution and reward function
are known. What if we do not know these, but have a population of users
to learn from?

Setting

e Users arrive sequentially
e User u has fixed threshold 6, drawn from unknown distribution F
e Assumptions:
— F has support [0, 1]
— Rewards bounded in |0, 1], r(x) unknown
— Profit function p(x) = r(x)(1 — F(x)) is concave*
Regret
e Optimal action: x* € argmax, p(x)

e Consider constant policies per user, one pull corresponds to lifetime
rewards for one user

o regret(n) = (1= y)np(x*) — (1 =) Luzy P(xu)

Learning strategy

We follow the approach of Kleinberg and Leighton [2003].
e Discretize [0,1] into K = O((n/logn)'/*) points

e Run UCB [Auer et al., 2002] / KL-UCB [Garivier and Cappé, 2012]
algorithm on discretized actions

Regret of UCB and KL-UCB policies

If p(x) = r(x)(1 — F(x)) satisfies a concavity condition, then
UCB and KL-UCB algorithms uesing a discretized grid with K =

O((n/logn)'/*) achieve O(/nlogn) regret.

Note: Kleinberg and Leighton [2003] provide O(/n) lower bound for
constant policies that applies here as well, but dynamic policies could
perform better.

Simulations

We include an optimistic benchmark: explore-exploit observes first m

thresholds 6, and thereafter selects the optimal action based on the

empirical CDF and known reward function.
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mean regret: 90.1 mean regret: 61.1 mean regret: 37.2

Take-away: possible gains possible with dynamic policies that learn more
about individual thresholds 6,

Feedback

Key idea: user does not always abandon immediately.
In a demand response program:
e Suppose a user is unhappy with platform’s thermostat adjustment.

e The first few times this happens, the user might just override the
settings, rather than abandoning.

e But eventually, if the experience is negative too frequently, the user
will abandon.

Augmenting the general model

User abandons after m ~ Geometric(p) violations of threshold.
Thatis, if x;, > 6
e with probability p user abandons, process stops, and

e with probability 1 — p, platform receives no reward, but process contin-
ues.

Feedback leads to partial learning

For any abandonment risk 0 < p < 1, the optimal policy partially
learns about the user. That is, at a certain point the optimal policy
becomes constant. (Informal)
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Figure 1: Optimal policy for 6 ~ U|[0,1], r(x) =x, p=1/2 and y=0.9.

Note, this is also true for p = 0; when there is no risk of abandonment.

Aggressive and conservative policies

We define aggressive and conservative policies as follows:
e Aggressive policy: xy > x..
e Conservative policy: xo < x..

If p =~ 1 (high risk of abandonment), then optimal policy is conservative,
provided 7 is sufficiently large.

If p ~ 0 (low risk of abandonment), then optimal policy is aggressive.



