
Learning with Abandonment
Sven Schmit and Ramesh Johari, Stanford University (Presented at International Conference on Machine Learning, ICML 2018)
NSF CNS-1544548: CPS: Breakthrough: Collaborative Research: The Interweaving of Humans and Physical Systems: A Perspective From Power Systems; 10/01/2015-09/30/2019

{schmit, rjohari}@stanford.edu

Personalize at individual level

How does a platform learn a personalized policy for its users?

Interact over time

Unhappy user
leaves platform

Platform

User

Motivation
• Demand response programs have a high abandonment rate.

• Once users leave, they are unlikely to return.

• Thus the platform is trying to optimize in the face of users that have a
risk of abandonment.

Puzzle
• I drew a threshold θ uniformly between 0 and 100.

• You guess number x. If x < θ , I pay you $x and you can guess another
number. If x > θ , we stop.

• How can you maximize your discounted sum of rewards?

Model

• User characterized by thresholds θt drawn from the population distribu-
tion F (assume known)

• At discrete times t = 0,1, . . ., select action xt ∈ X
• If xt < θt, obtain (random) reward Rt(xt) and continue, otherwise obtain

no reward and process stops.

Objective
Let T be the first time xt > θt: T = min{τ : xτ > θτ}. The goal is to
maximize the expected sum of discounted rewards up to time T :

x∗ ∈ arg max
{xt}∞t=0

E

[
T−1

∑
t=0

γ
tRt(xt)

]

Related work

• Abandonment: Lu et al. [2018]

• Mechanismd design and dynamic pricing: Myerson [1981]

• Demand estimation: Kleinberg and Leighton [2003]

• Safe reinforcement learning: Moldovan and Abbeel [2012], Berkenkamp
et al. [2017]

One user

First, we focus on learning the preference of a single user. We need to
impose additional structure to make the problem tractable.

Fixed threshold
Suppose θt = θ is drawn once from a known threshold distribution F . Let
r(x) = E(Rt(xt))> 0, also assumed known.

Under minimal assumptions, the optimal policy is a constant policy.

Fixed threshold leads to constant policy

Suppose the function f : x→ r(x)(1−F(x)) has a global optimum
at x∗. Then, the optimal policy is xt = x∗ for all t.

Intuition

Suppose optimal policy is increasing: xt = y, xt+1 = z > y. Compare to
xt = xt+1 = z.

• θ < y: identical outcome

• θ ≥ y: z is optimal, so xt = z is better than xt = y

Corollary for simple model

For θ ∼U [0,1] and Rt(x) = x the optimal policy is xt = 1/2 for all t.
Now consider θ ∼ U [c,1] for any c ∈ [0,1/2], then the optimal policy
remains xt = 1/2.

Independent thresholds
Consider the other extreme: θt drawn iid from F . This prohibits any
learning across time, so again a constant policy is optimal.

Robustness
For more general models, optimal policy is intractable, but generally
increasing.

Additive noise θt = θ + εt.

• Small noise If εt ∈ [−y,y], then constant policy is approximately opti-
mal (informal; see paper for details).

• Large noise If εt are independent, and variance is large, then constant
policy is approximately optimal (informal; see paper for details).

Summary
Our results for the single user model can be summarized as follows.

One
threshold

Independent
 Thresholds

Constant policy
is optimal

Additive noise model

Constant policy
close to optimal

Constant policy
is optimal

Constant policy
close to optimal

Optimal policy
is increasing & intractable

θt = θ + ϵt

ϵt ∈ [−y, y] ≈ Var(ϵt) > Var(θ)
no independence assumption

Learning arcoss a population

So far, we have assumed that threshold distribution and reward function
are known. What if we do not know these, but have a population of users
to learn from?

Setting
• Users arrive sequentially

• User u has fixed threshold θu drawn from unknown distribution F
• Assumptions:

– F has support [0,1]
– Rewards bounded in [0,1], r(x) unknown

– Profit function p(x) = r(x)(1−F(x)) is concave*

Regret

• Optimal action: x∗ ∈ argmaxx p(x)
• Consider constant policies per user, one pull corresponds to lifetime

rewards for one user

• regret(n) = (1− γ)np(x∗)− (1− γ)∑
n
u=1 p(xu)

Learning strategy
We follow the approach of Kleinberg and Leighton [2003].

• Discretize [0,1] into K = O((n/ logn)1/4) points

• Run UCB [Auer et al., 2002] / KL-UCB [Garivier and Cappé, 2012]
algorithm on discretized actions

Regret of UCB and KL-UCB policies

If p(x) = r(x)(1 − F(x)) satisfies a concavity condition, then
UCB and KL-UCB algorithms uesing a discretized grid with K =
O((n/ logn)1/4) achieve O(

√
n logn) regret.

Note: Kleinberg and Leighton [2003] provide O(
√

n) lower bound for
constant policies that applies here as well, but dynamic policies could
perform better.

Simulations
We include an optimistic benchmark: explore-exploit observes first m
thresholds θu and thereafter selects the optimal action based on the
empirical CDF and known reward function.

0 500 1000 1500 2000
mean regret: 90.1

0

20

40

60

80

100

ucb

0 500 1000 1500 2000
mean regret: 61.1

0

20

40

60

80

100

klucb

0 500 1000 1500 2000
mean regret: 37.2

0

20

40

60

80

100

explore-exploit

Take-away: possible gains possible with dynamic policies that learn more
about individual thresholds θu.

Feedback

Key idea: user does not always abandon immediately.

In a demand response program:

• Suppose a user is unhappy with platform’s thermostat adjustment.

• The first few times this happens, the user might just override the
settings, rather than abandoning.

• But eventually, if the experience is negative too frequently, the user
will abandon.

Augmenting the general model
User abandons after m∼ Geometric(p) violations of threshold.

That is, if xt > θ

• with probability p user abandons, process stops, and

• with probability 1− p, platform receives no reward, but process contin-
ues.

Feedback leads to partial learning

For any abandonment risk 0 ≤ p < 1, the optimal policy partially
learns about the user. That is, at a certain point the optimal policy
becomes constant. (Informal)

0 2 4 6 8 10
time step t

0.0

0.2

0.4

0.6

0.8

1.0

ac
tio

n
at

 ti
m

e
t x

(t)

Visualization of the optimal policy tree

Figure 1: Optimal policy for θ ∼U [0,1], r(x) = x, p = 1/2 and γ = 0.9.

Note, this is also true for p = 0; when there is no risk of abandonment.

Aggressive and conservative policies
We define aggressive and conservative policies as follows:

• Aggressive policy: x0 > x∗c
• Conservative policy: x0 < x∗c
If p≈ 1 (high risk of abandonment), then optimal policy is conservative,
provided γ is sufficiently large.

If p≈ 0 (low risk of abandonment), then optimal policy is aggressive.

