

Institute for Software Integrated Systems

Vanderbilt University

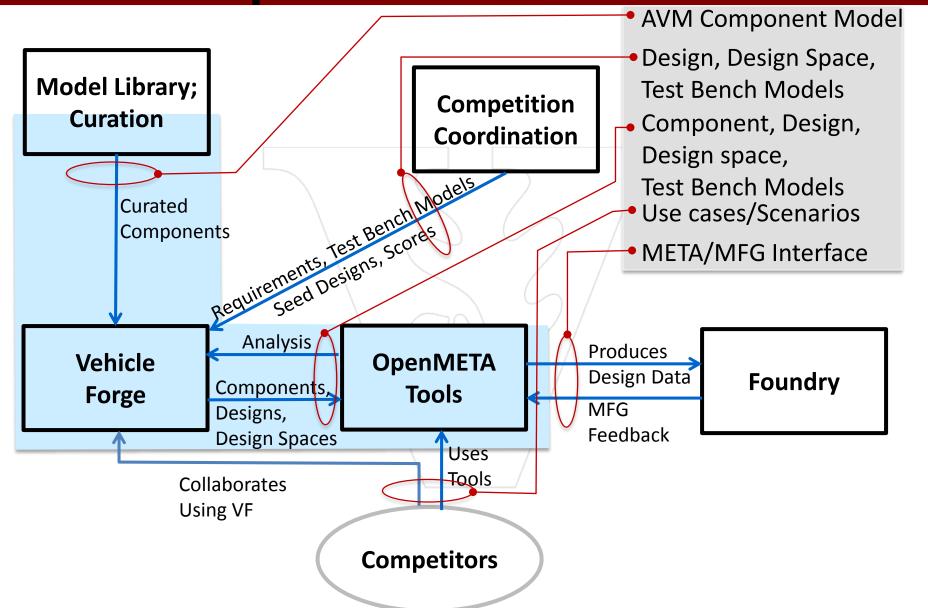
Lessons Learned in Model-Based Design: Semantics is Important

Janos Sztipanovits and Tihamer Levendovszky

Institute for Software Integrated Systems Vanderbilt University

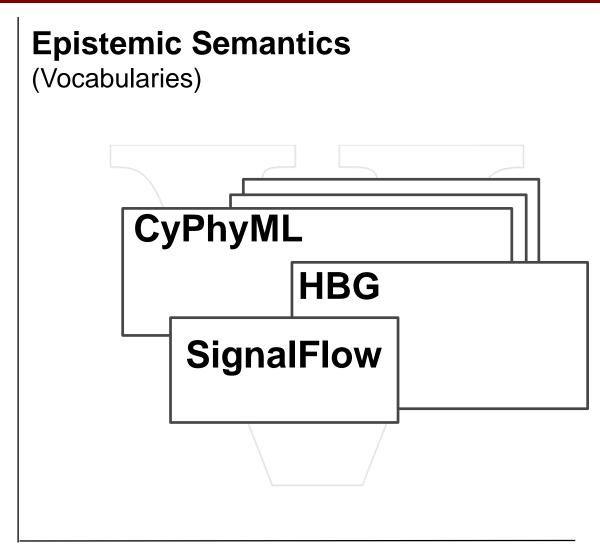
Email: janos.sztipanovits@vanderbilt.edu

Design Flow Requires Model Interchange


Architecture Design	Integrated Multi-physics/Cyber Design	Detailed Design	
Modeling Exploration	Modeling Simulation V&V	Modeling Analysis	
Rapid exploration	Exploration with integrated optimization and V&V	Physics-based Structure/CAD/Mfg Deep analysis	
 Design Space + Constraint Modeling Architecture Modeling Static Component Modeling (multiphysics) 	 Design Space + Behavioral Constraint Modeling Architecture Modeling Dynamics Modeling (multiple abstractions and multiphysics) CAD/assembly modeling Coarse Manufacturing Constraint Modeling 	 Architecture Modeling Detailed Domain Modeling - CAD - FEA; thermal, fluid - Surrogate gen. Detailed Mfg. modeling RT SW modeling 	

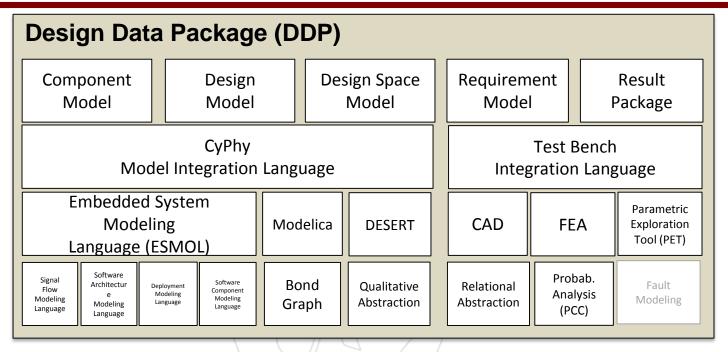
Domain Specific Modeling Languages

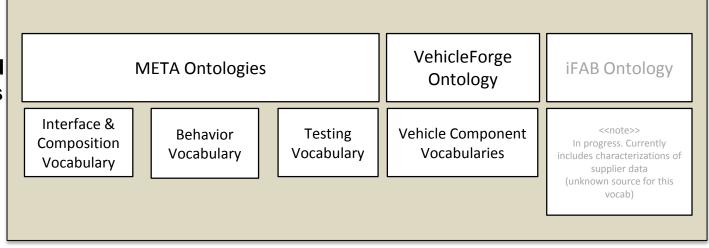
Example: AVM Systems Require Complex Information Flows



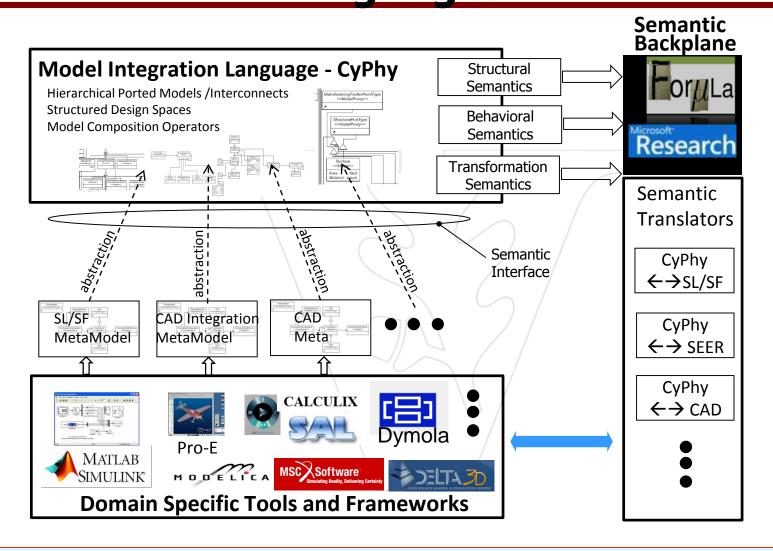
OpenMETA Information Architecture

Modeling Language Semantics


(Metamodels)


Information Architecture

Models and Modeling Languages


Standardized Vocabularies and Core Types

Case for Model Integration Languages...

Impact: Open Language Engineering Environment → Adaptability of Process/Design Flow → Accommodate New Tools/Frameworks , Accommodate New Languages

Convergence in Formal Framework: FORMULA

- History: Foundations for Embedded Systems ITR; Ethan Jackson at VU 2005-2008
- Microsoft Research (Bellevue & Aachen);
 Satisfiability Modulo Theory Solver (Z3); VS distribution
- http://research.microsoft. com/formula

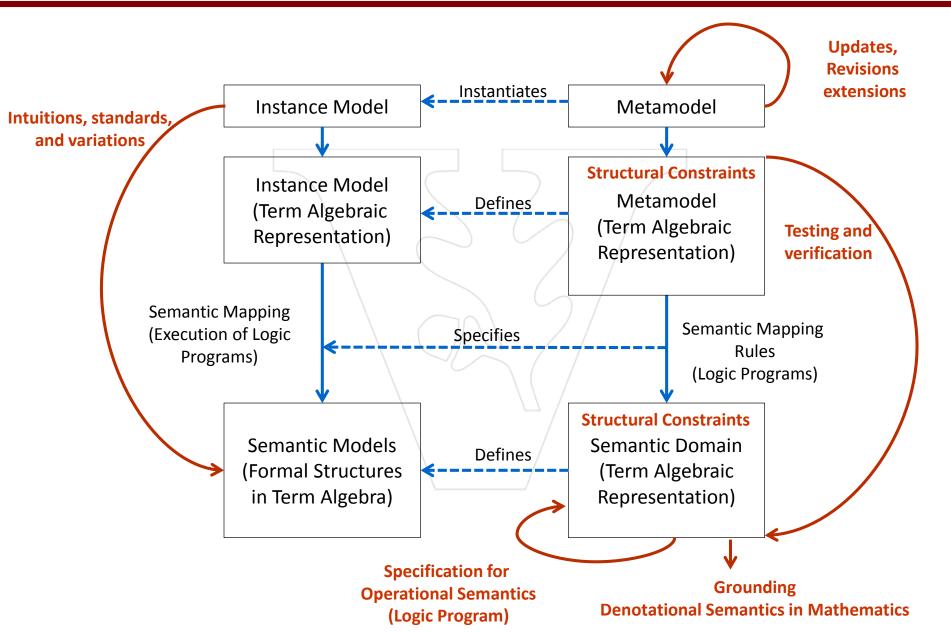
- Foundation: Algebraic Data Types (ADT) and First-order logic with fixpoints (FPL)
- Parameterized with background theories (bit vectors, term algebras, etc.
- Semantics is defined by constraint logic programming (CLP)
- Evolving structures; temporal logic

E7Current Work: Semantic Backplane

The Semantic Backplane is based on a mathematical framework provided by term algebra and logics, incorporates a tool suite for specifying, validating and using formal structural and behavioral semantics of modeling languages, and includes a library of metamodels and specifications of model transformations.

Functions	(Meta)Models	Languages	Tools	Role
Metamodeling	Event < <alam>> 0.* dist Current </alam>	MetaGME	• GME • MetaGME-2- Formula	DSML spec.Constraint CheckingMetaprog.
Transformation Modeling	The second secon	UMTL	• GReAT • UDM	Transf. spec.Compiling spec to transformer
Formal Metamodeling	<pre>1 domain DFA { 2 primitive Event ::= (lbl: Integer). 3 primitive State ::= (lbl: Integer). 4 [Closed(src, trg, dst)] 5 primitive Transition ::= (src: State, 6 [Closed(st)] 7 primitive Current ::= (st: State). 1 transform Step<fire: in1.event=""> from DFA</fire:></pre>	Formula	DomainComp.Trace Gen.	 Metamod. checking Example gen. Semantic units
Formal Transformation Modeling	<pre>2 out1.State(x) in1.State(x). 3 out1.Event(x) in1.Event(x). 4 out1.Transition(s, e, sp) in1.Trans 5 out1.Current(sp) :- in1.Current(s), in 6 out1.Current(s) in1.Current(s), fai 7 }</pre>	(MSR)	Semantic Anchoring	Semantics for complex DSMLsComposition

Objectives



- A handy and intuitive modeling language
 - Constraining the Language
 - Incorporating existing semantic variations and standards (e.g. MAAB)
- Multiple Levels of Formality
 - Precise formal specification
 - Intuitive, annotated and excerpted formal specification
- Verified Formal Specification
 - Testing executable specifications
 - Bounded model checking on specifications
- Supporting Iterative Development Model
 - Regular updates, revisions, and extensions to the integration language

Semantic Anchoring Dissected

Examples

- A handy and intuitive modeling language
 - MAAB
- Multiple Levels of Formality: Electrical Power Port
 - HLE
 - HLE Explained
- Supporting Iterative Development Model
 - Metamodeling mathematics for denotational semantics (HLE, Stateflow)
 - Specifying operational semantics (Stateflow)
- Verified Formal Specification
 - Stateflow