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Self-Supervised Life-Long Learning
for Social Navigation Strategies

Risk-Aware Dynamic Motion Planning Intention-Aware Behavior Prediction

Research Thrusts

T1: Continual adaptive learning of context-aware predictive models for human activity

T1.1: Establish baseline context-aware human models for responding to the presence and movement of a 
mobile robot.

T1.2: Developing a lifelong-learning approach to human motion modeling.

T1.3: Simulation for dynamic human-populated environments

T2: Risk-Aware Path Planning Using Learned Models for Cost-of-Failure Minimization

T2.1 Optimal control in stochastic environments

T2.2 Reinforcement learning for policy optimization

T2.3 Importance sampling for optimal policy search

T3: Extensions to Other Platforms

T3.1 Application to mobile platforms without manipulators

T3.2 Applications to socially expressive platforms

T4: Policy Exploration for Development of Novel Social Navigation Strategies

T4.1 Seed expressive motions based on human behaviors

T4.2 Apply exploration-exploitation strategies 

Data collection

Intention Estimation

Model evaluation

Behavior Observation

Data processing

Intention Estimator Update

Model Synthesis

Model (Re-)Training

Active Mode Refresh Mode

• Conduct long term deployments of mobile robots in populated public spaces, 
including academic building hallways, coffee shops, and building lobbies. Robots will 
collect data and re-train their models based on their experiences throughout the day.

• Develop and merge novel techniques of goal and intention inference with motion 
modeling and prediction, conditioning predictions on contextual cues including 
location, time-of-day, crowdedness, objects held, and pose.

• Create and release a simulation environment for populating virtual spaces with 
various goal-directed humans, pairing agent objectives with learned behavioral 
models for realistic navigation.

• Informed by learned context-aware models of human motion, agents will plan 
through time optimizing for collision-free paths in short time-horizons, while 
minimizing co-occurring occupancy probability mass (i.e., anticipated collision).

• Utilizing inferred collision points as inputs, the risk-aware planning agent will 
then solve for an optimal upper-kinematics configuration to minimize the cost of 
collision (e.g., if carrying a cup of coffee with the left hand, using the right arm to 
create a bumper around it)

• Iterate between applying optimization updates to ground path and kinematic 
configurations through time to determine low risk behaviors.

● Using an observation-driven process, a robot is able to map observations of human behavior 
in a room to an occupancy heatmap indicating areas of interest.

● Once sufficient data has been collected, the robot waits until human traffic dissipates and 
explores these areas of interest to identify features and objects in their vicinity.

● These features are then associated with being possible areas of interest in novel settings.

● The robot is able to associate the presence of these features with desirable destinations for 
humans, allowing for generalization of past observations into new environments.

● These priors, coupled with contextual observations of objects humans are carrying (e.g., 
associating humans carrying mugs with having a coffee machine as a goal destination), 
facilitate more accurate human path prediction.
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