NRI: Liquid-Solid Metal for Embodied Intelligence in Semi-Soft, Human-Collaborative Robots

PI – Alan Kuntz, University of Utah; Co-PI – Robert J. Webster III, Vanderbilt University arm.cs.utah.edu; research.vuse.vanderbilt.edu/MEDLab/

Control and Planning

- Accurate tip control of the robot and the ability to follow desired trajectories via resolved-rates and model predictive control
- Supervisory control via fast motion planning
- Context-dependent surgical sub-task automation via learning from demonstration¹

Design and Modelling

- Liquid Metal Alloy (LMA) as internal stiffness control channels and solidifiable support structures within an elastomeric substrate
- Curved control fibers to enable the full set of rod deformation modes
- Cosserat Rod and machine learning modeling

Broader Impact

- Aim to reduce the invasiveness of surgical procedures associated with Video Assisted Thoracoscopic Surgery (VATS), e.g., surgical biopsy of lung tumors.
- 150,000 people require surgical biopsy but, due in part to its risk, 83% of these patients (124,500 per year in the USA alone) do not receive it.
- Reducing invasiveness via a semi-soft robot may enable many more patients to have urgently needed surgical lung biopsy in the future and improve patient outcomes.

Outreach and Education

- Aspects have been incorporated as a section into a **medical robotics graduate course** at the UofU
- Outreach planned at **K-12 events** in both Salt Lake City, UT and Nashville, TN

¹Y. Huang, M. Bentley, T. Hermans and A. Kuntz, "Toward Learning Context-Dependent Tasks from Demonstration for Tendon-Driven Surgical Robots," International Symposium on Medical Robotics (ISMR), 2021, pp. 1-7.

Multiple other papers related to this project are currently under submission.