Lock-in-Pop Design: Only Access Popular Paths in the Kernel

s R
Project Goal: Allow untrusted code to run on top of a vulnerable host OS

- Key insight: Popular kernel paths contain fewer bugs }

1 Bug
B 12%

Popular Kernel Paths

B Unpopular Kernel Paths

" Unreached Kernel Paths

Zero-day Bug /

/ Approach \

Quantitative Security Metric Lock-in-Pop Design

* |dentify the lines of code executed In * A minimal sandbox kernel -
the kernel only access popular paths

* Analyze bug distribution in the kernel » SafePOSIX re-creation —
Popular paths metric is effective! implement complex and risky

k OS functionality /

vt (I D
<=1 1-2 2-3 34 >=4 (years) 0.2 bugs/KLOC
} j Attacker
metric 2 . l

drivers non-drivers 0 bugs/KLOC
bug density @ Untrusted User Code

metric 3

i

popular unpopular unreachable _ _
System Functionality User

100% Linux kernel code Re-creation
®
/ Evaluation Results \ e % X
S TCE

S Boundary
VM Bugs Triggered D .
Docker 8/35 (22.9%) os =5k | S0 | U Lo
Kernel | & % % L rans | T p
LXC 12/35 (34.3%) T~
Graphene 8/35 (22.9%)
Lind 1/35 (2.9%)

4 PN Y

Interested 1n meeting the PIs? Attach post-1t note below!

o _Se. . . .
@ National Science Foundation NY U | 7aNpon scroo
_ | | OF ENGINEERING

WHERE DISCOVERIES BEGIN

