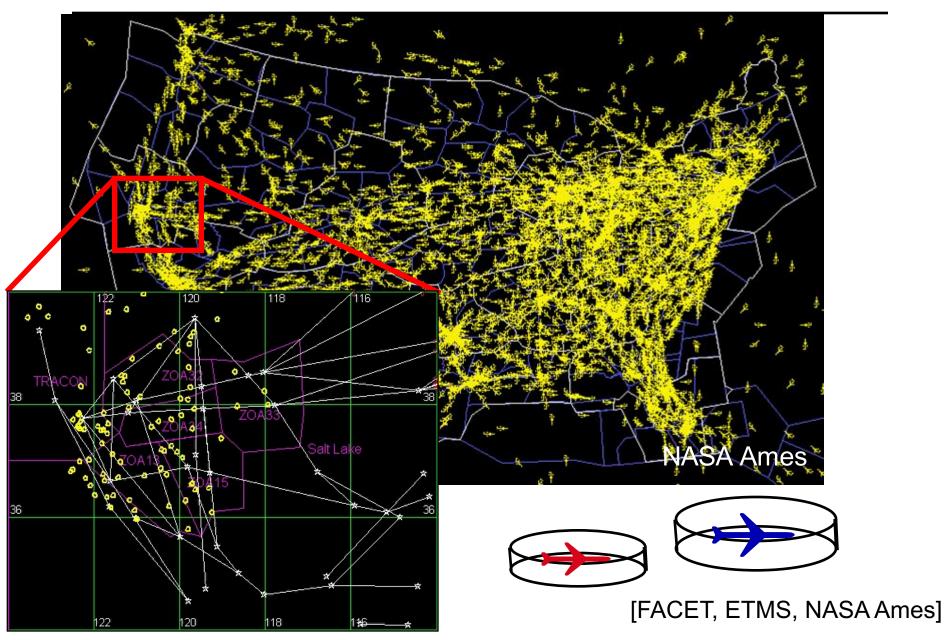
UAV Traffic Management (UTM)

Claire Tomlin

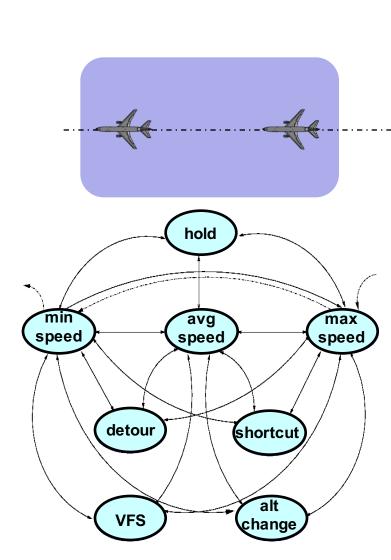
Department of Electrical Engineering and Computer Sciences University of California at Berkeley

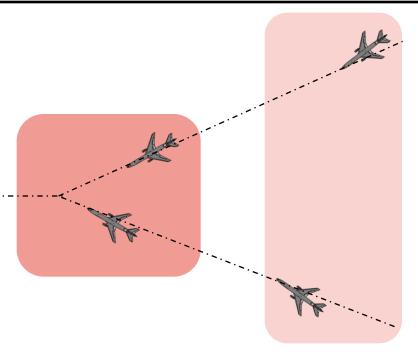
February 9 2018

Air Traffic Control



Controller must keep aircraft separated



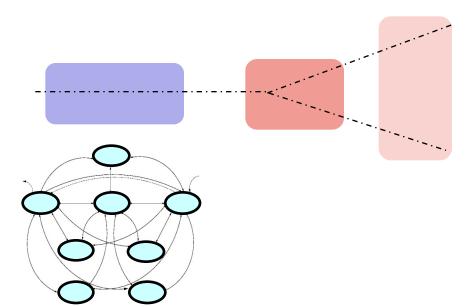


- Small set of control actions
- Infrequent deviations from nominal
- Grouping by potential conflict

Growing numbers of UAV applications

[Amazon]

[Google]



- 1. Safety
- 2. Simplicity

[computation]

3. Ability to adapt to new information [data-driven]

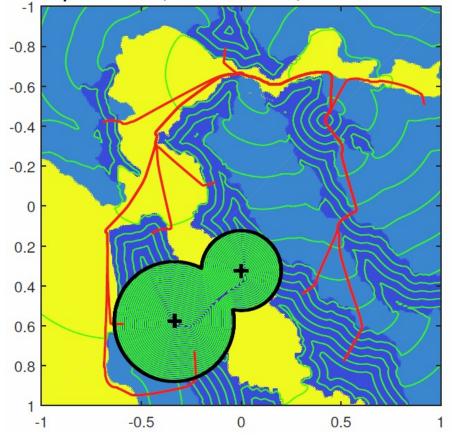
Example 1: Collision Avoidance

Pilots instructed to attempt to collide vehicles

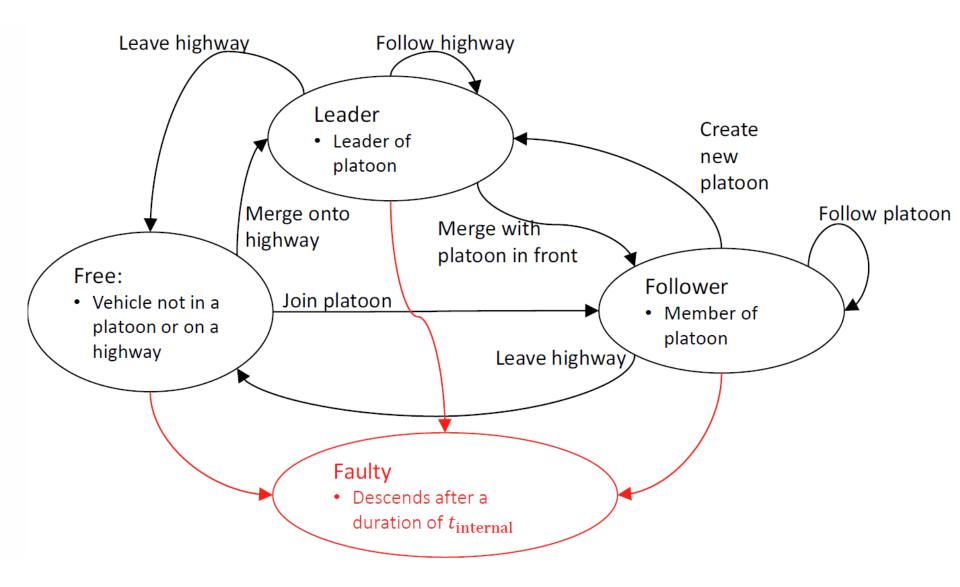
Example 2: Platooning UAVs

Bay Area Map, Shortest Paths -1 -0.8 Vallejo -0.6 concord San Rafae -0.4 -0.2 Berkeley 0 San Francisco 0.2 0.4 Hayward Pacifica 0.6 San Mateo Fremont 0.8 1 -0.5 0.5 -1 0 1

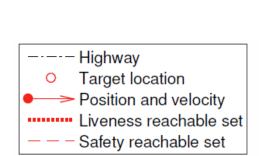
Speed Profile, Shortest Paths, Value Function



Example 2: Platooning UAVs

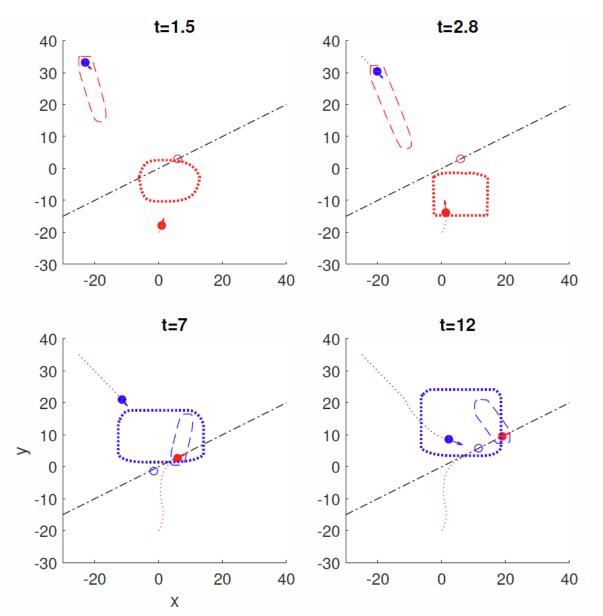


Merge and join



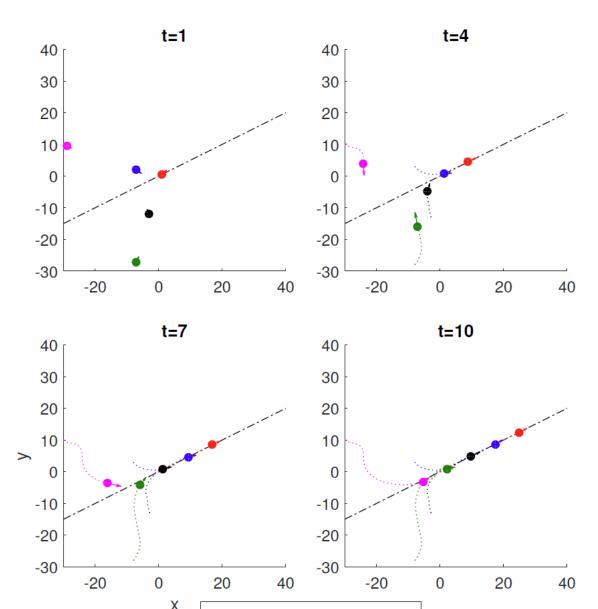
Red vehicle merges onto highway

Blue vehicle joins red vehicle's platoon

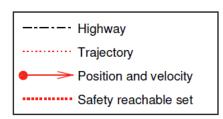


Merge and join

4 vehicles join platoon following red vehicle



Intruder



Platoon responding to intruder (red vehicle)

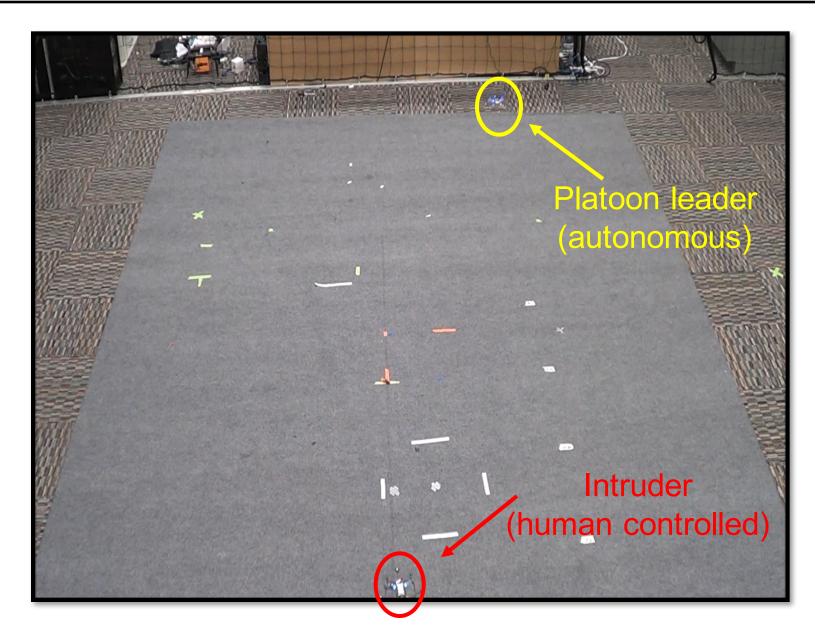
Reachable sets for blue vehicle are shown

Blue vehicle must stay outside of all dotted boundaries

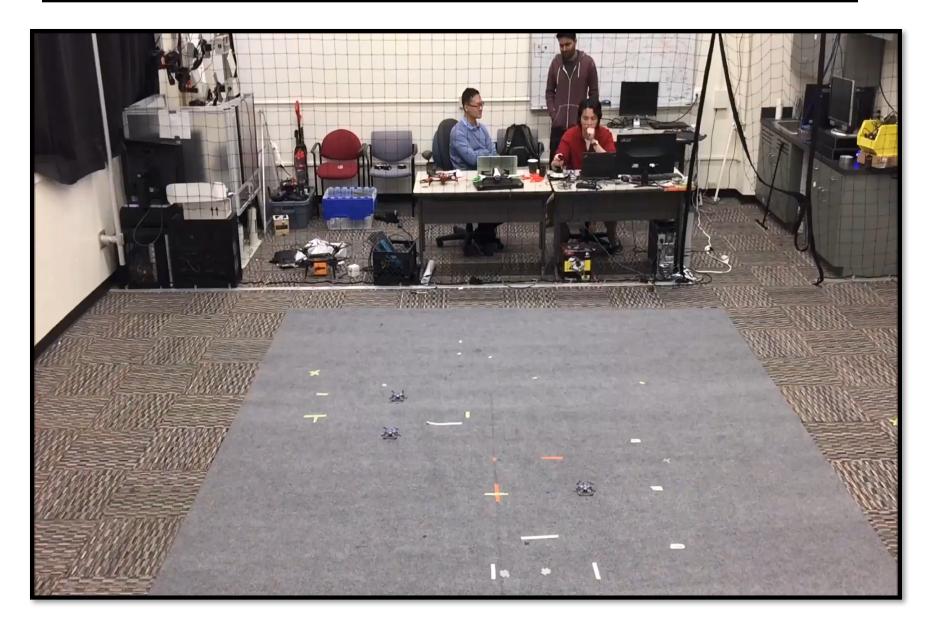


Experiments: Form Platoon

Experiments: Intruder Avoidance

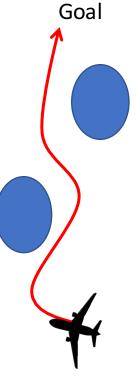


Experiments: Change Highways



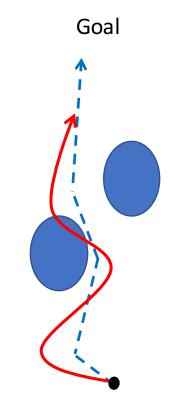
Slow and Accurate Planning The Proposal Fast (but less accurate) Planning

Goal



- Optimal control
- Guarantees on safety and goals
- Handles external disturbances (e.g. wind)
- Slow to compute

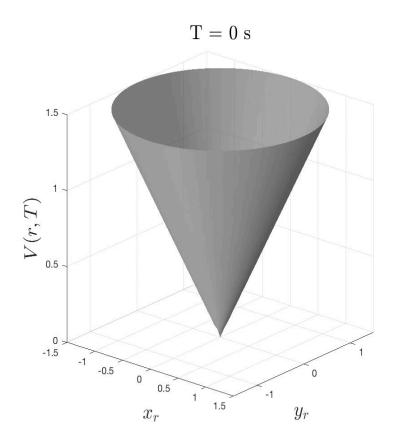
- Precompute a tracking error bound around the simple planning model
- Usable with lots of path/trajectory planners



- Very fast with simple dynamics
- May not capture all system behavior
- Not necessarily robust to disturbances

Precomputed Tracking Bound

Goal: Map initial relative state to worst possible tracking error over time

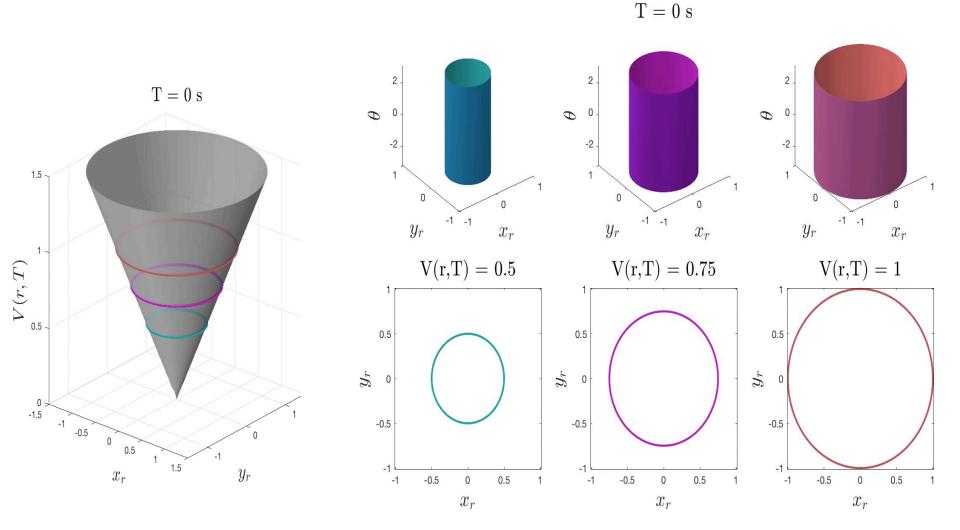


Planning system tries to maximize cost

Tracking system tries to minimize cost

Capture maximum cost over time

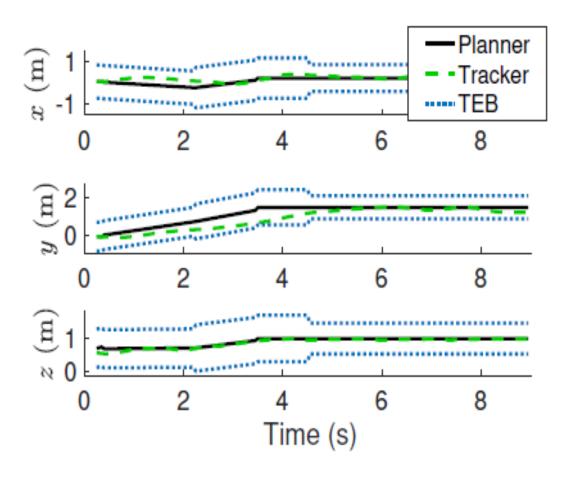
Precomputed Tracking Bound



Smallest Invariant Level Set = Tracking Error Bound

16

Fast and Slow Planning



D. Fridovich-Keil*, S. Herbert*, J. Fisac, S. Deglurkar, and C. J. Tomlin, "Goal-Driven Dynamics Learning via Bayesian, 7 Optimization," 56th IEEE Conference on Decision and Control, Dec 2017. ... but stay safe while learning

• Safety:

- A nominal model with error bounds
- Reachable sets computed to ensure safety in worst case

• Performance:

- Use online learning to update model
- Cost function used to generate control action within the safe set

Safe Learning with online model validation

New Vistas: Personal Air Mobility

[AeroVelo, Aurora, Vahana, Terrafugia...]

Thanks

- Kene Akametalu
- Anil Aswani (now in IEOR, UCB))
- Max Balandat (now at Facebook)
- Somil Bansal
- Patrick Bouffard (now at A^3)
- Mo Chen (now at Stanford)
- Jerry Ding (now at UTRC)
- Roel Dobbe
- Jaime Fisac
- David Fridovich-Keil
- Jeremy Gillula (now at EFF)
- Sylvia Herbert
- Gabe Hoffmann (now at Apple)
- Qie Hu
- Haomiao Huang (now at Kuna)
- Frank Jiang (now at KTH)

- Shahab Kaynama (now at ClearPath)
- Forrest Laine
- Donggun Lee
- Casey Mackin
- Vicenç Rubies Royo
- Michael Vitus (now at Google)
- Steve Waslander (now in ME, University of Waterloo)
- Insoon Yang (now in EE, USC)
- Melanie Zeilinger (now in ME, ETHZ)
- Wei Zhang (now in ECE, Ohio State University)

NSF CPS ONR NIH NASA AFOSR NSF PIRE