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ABSTRACT
Recently, many applications have arisen in distributed control that
require consensus protocols. Concurrently, we have seen a pro-
liferation of malicious attacks on large-scale distributed systems.
Hence, there is a need for (i) consensus problems that take into
consideration the presence of adversaries and specify correct be-
havior through appropriate conditions on agreement and safety, and
(ii) algorithms for distributed control applications that solve such
consensus problems resiliently despite breaches in security. This
paper addresses these issues by (i) defining the adversarial asymp-
totic agreement problem, which requires that the uncompromised
agents asymptotically align their states while satisfying an invari-
ant condition in the presence of adversaries, and (ii) by designing
a low complexity consensus protocol, the Adversarial Robust Con-
sensus Protocol (ARC-P), which combines ideas from distributed
computing and cooperative control. Two types of omniscient ad-
versaries are considered: (i) Byzantine agents can convey different
state trajectories to different neighbors in the network, and (ii) ma-
licious agents must convey the same information to each neighbor.
For each type of adversary, sufficient conditions are provided that
ensure ARC-P guarantees the agreement and safety conditions in
static and switching network topologies, whenever the number of
adversaries in the network is bounded by a constant. The conser-
vativeness of the conditions is examined, and the conditions are
compared to results in the literature.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.1.1 [Models and Principles]: Systems and Information
Theory—General Systems Theory

General Terms
Algorithms, Security, Theory
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1. INTRODUCTION
Due to recent improvements in computation and communica-

tion, control system design has made a shift in many applications
from centralized to decentralized and distributed approaches. This
trend has been fueled by the need for increased flexibility, reliabil-
ity, and performance in applications such as coordination of vehi-
cle formations [3], flocking [6], and belief propagation in Bayesian
networks [15]. For these applications and many others, reaching
some form of consensus is fundamental to coordination [11, 14].
However, large-scale distributed systems have many entry points
for malicious attacks and intrusions. If a security breach occurs,
traditional consensus algorithms will fail to produce desirable re-
sults, and therefore lack robustness [5]. Hence, there is a need for
resilient consensus algorithms that guarantee correct behavior even
after sustaining security breaches.

Of course, there is a long history in distributed computing of
studying consensus problems in the presence of faults and adver-
sarial processors [11, 20]. The most potentially harmful form of
adversary is the Byzantine processor, which may behave arbitrarily
within the limitations set by the model of computation [7]. There-
fore, worst case executions must be considered. Typically, the num-
ber of processors that may be Byzantine are bounded and funda-
mental tight bounds have been established on the ratio of Byzan-
tine to normal processors [1, 7], as well as on the connectivity of
the graph representing the communication network [1].

From a control theoretic viewpoint, consensus in the presence of
adversaries has only been considered recently, and has focused on
detection and identification of misbehaving nodes in linear consen-
sus networks [16–19, 24, 25]. While detection is clearly an impor-
tant problem, these techniques require each node to have informa-
tion of the network topology beyond its local neighborhood. This
requirement ofnonlocal informationrenders these techniques inap-
plicable to general time-varying networks. Further, the detection al-
gorithms are computationally expensive and do not consider safety
constraints on the states of the agents. Using these approaches, it is
possible that the adversaries may drive the states of the agents out-
side of a predetermined safe set during the detection phase, which
may not be suitable for certain safety critical applications.

In our work, we study a consensus protocol, or algorithm, that
is low complexity and usesonly local informationto achieve re-
silience against a bounded number of adversaries in the network.
In order to codify a notion of correct behavior of the uncompro-
mised, or cooperative, agents in the presence of adversaries, we
define a consensus problem that specifies formal agreement and
safety conditions. The agreement condition requires that all co-
operative agents asymptotically align their states. The safety con-
dition requires that the state trajectories of the cooperative agents



remain inside the minimal hypercube formed by the initial states
of the cooperative agents. This safety constraint is applicable to
cases where the unsafe regions are unknown, but the minimal hy-
percube containing the initial states is known to be safe. Together,
these conditions form theadversarial asymptotic agreement prob-
lem, which is a continuous-time consensus problem analogous to
the Byzantine approximate agreement problem [2,11].

For this problem, we model the networked system in continuous-
time and study both static and dynamic (or switching) network
topologies with directed information flow. The agents have con-
tinuous dynamics and convey state information to each other over
a network that switches between a finite number of discrete topolo-
gies. In this paper, we define two types of omniscient adversaries:
malicious and Byzantine. Malicious agents share the same infor-
mation with each neighbor in the network and are analogous to the
discrete-time malicious agents studied in [16–19, 24]. Byzantine
agents are capable of conveying different information to different
neighbors in the network, and are therefore more deceitful than ma-
licious agents.

The proposed consensus protocol is the Adversarial Robust Con-
sensus Protocol (ARC-P), which borrows ideas from computer sci-
ence and cooperative control. It combines the elimination of ex-
tremal values used in Byzantine resilient consensus algorithms in
distributed computing [2, 11], with the standard consensus tech-
nique in cooperative control of summing the neighboring relative
states as input to an integrator agent [14].

We introduced ARC-P in [8], where we studied resilience to ma-
licious agents in complete networks. Here we extend the study of
ARC-P to more general network topologies. We present sufficient
conditions on the set of possible network topologies that allow us
to prove agreement for both fixed and switching topologies using
a common Lyapunov function. For safety, we use an invariant set
argument similar to the argument made in [8]. We also provide a
necessary condition on consensus using ARC-P. Then, we relate the
sufficient conditions to known necessary and sufficient conditions
set forth in the literature–which have addressed different consensus
problems under different models of computation. Although the suf-
ficient conditions are conservative, we provide pathological exam-
ples in which the conditions are relaxed minimally and consensus
is precluded. Finally, we illustrate the theoretical results through a
simulation example.

The rest of the paper is organized as follows. Section 2 covers
some preliminaries including the terminology, system model, and
problem statement. ARC-P is then described in Section 3. Sec-
tion 4 studies the convergence properties of ARC-P in a class of
directed networks. Section 5 examines more closely the sufficient
conditions given in Section 4, and illustrates the results through
simulation. Section 6 gives an account of related works, and Sec-
tion 7 provides conclusions and directions for future work.

2. PRELIMINARIES

2.1 Review of Graph Theory
In this section we review some fundamentals of graph theory

pertinent to this paper. As is common when dealing with multi-
agent networks, we model the networked multi-agent system with
a (finite, simple, labelled)digraph, D = (V, E) [12]. Thenode set
V = {1, . . . , n} abstracts then dynamic agents asnodes, and the
directed edge setE ⊂ V ×V models the information flow between
the agents, which is realized either through communication or sens-
ing. For each ordered pair(i, j) ∈ E , state information flows from
nodei to nodej. We also consider theunderlying graphG(D),

which is defined by replacing directed edges ofD by undirected
ones, resulting in the edge setEG .

For local information flow, we consider the set ofin-neighbors
of nodej, defined byN in

j ={i ∈ V|(i, j) ∈ E}, and the set of
inclusive in-neighborsof nodej, defined byJ in

j = N in
j ∪{j}. The

in-degreeof j is denoteddin
j , |N in

j |, and theminimum in-degree
of D is denotedδin(D). Likewise, themaximum in-degreeof D
is denoted∆in(D). There are, of course, analogous definitions for
out-neighbors, e.g., theout-degreeof j is dout

j , |N out
j | and the

minimum out-degreeof D is δout(D).
In order to describe information flow across the network, we con-

sider the following definitions. Apathis a sequence of distinct ver-
ticesi0, i1, . . . , ik such that(ij , ij+1) ∈ E , j = 0, 1, . . . , k − 1.
We use the notion of path to define different forms of connected-
ness. We say thatD is strongly connectedif for every i, j ∈ V,
there exists a path starting ati and ending atj. If the underlying
graph is connected, thenD is weakly connected. Alternatively, if
the underlying graph is disconnected, thenD is disconnected.

To measure the robustness and redundancy of information flow,
we define avertex cutas a set of verticesK such that the removal
of K results in either a disconnected digraph or the trivial digraph
consisting of a single node. Theconnectivityκ(D) is the size of a
minimal vertex cut. A digraph is said to bek-connectedif κ(D) ≥
k. A simple consequence of defining connectivity in this manner is
κ(D) = κ(G(D)) [4].1

2.2 System Model
This section details the system model, with the assumptions on

the cooperative agents and adversaries. To allow for time-varying,
or switching, network topologies, we consider the finite set of all di-
graphs onn vertices,Γn = {D1, . . . ,Dd}. Each digraphDk ∈ Γn

has the same vertex setV, whereas the directed edge setsE1, . . . , Ed

are all distinct. Without loss of generality,V is partitioned into a
set ofp cooperative agentsVc = {1, . . . , p} and a set ofq adver-
sariesVa = {p + 1, . . . , n}, with q = n − p. A switching signal
σ : R≥0 → {1, . . . , d} determines which digraphDσ(t) ∈ Γn de-
scribes the network at timet ∈ R≥0. We assume a finite number
of switches on any finite time interval.

For simplicity of notation, we assume each agent’s state is scalar.
Collectively,xc(t) = [x1(t), . . . , xp(t)]

T ∈ R
p is the state of the

cooperative agents. Likewise, the collective state of the adversaries
conveyed to agentj ∈ Vc is xaj

(t) = [xp+1,j(t), . . . , xn,j(t)]
T ∈

R
q. If k /∈ J in

j (t), then adversaryk does not directly influence
agentj at timet, in which case agentj does not receivexk,j(t).
While this notation may seem overly cumbersome, it simplifies
dealing with Byzantine agents. One may take the viewpoint that
xk,j(t) is the trajectory Byzantine agentk would like to convey to
agentj, but the topological constraints on the network prevent it
from doing so. With this justification, we denotex : R×Vc → R

n

by x(t, j) = [xTc (t), x
T

aj
(t)]T ∈ R

n. Whenever the context is un-
derstood, we will drop the arguments and writexc, xaj

, andx.
Finally, we denote byxa the set of allxaj

, j ∈ Vc.

2.2.1 Cooperative Agents
Each cooperative agenti ∈ Vc has dynamics given bẏxi = ui,

whereui = fi,σ(t)(xc, xai
) is a control input. The states of the

neighboring adversaries, withinxai
, are analyzed as uncertain in-

puts; however, because there is no prior knowledge about which
agents are adversaries, the control input must treat the state infor-

1In [4], this form of connectivity is defined asκ1(D) and other
forms of connectivity in digraphs are studied (most notably strong
connectivity). For our purposes, the definition given here suffices.



mation from neighboring agents in the same manner. The dynamics
of the system of cooperative agents are then defined fort ≥ 0 by

ẋc = fc,σ(t)(xc, xa), xc(0) ∈ R
p,Dσ(t) ∈ Γn, (1)

wherefc,σ(t)(xc, xa) = [f1,σ(t)(xc, xa1
), . . . , fp,σ(t)(xc, xap)]

T.
The dynamics of (1) define a switched system without impulse ef-
fects, so the trajectory of any solution is absolutely continuous [10].

2.2.2 Adversaries
The q adversaries are assumed to be designed for the purpose

of disrupting the objective of the cooperative agents. It is assumed
that the number of adversaries in the network is bounded above by
a constantF ∈ Z≥0, so thatq ≤ F . We consider two different
adversary models, defined as follows.

DEFINITION 1. The q adversaries have continuous state tra-
jectories; i.e.,xaj

is continuous forj ∈ Vc. An adversary is

(i) Byzantine if it can convey different state trajectories to differ-
ent neighbors; i.e., we may havexai

6= xaj
, or xk,i 6= xk,j ,

wheneverk ∈ Va ∩ J in
i (t) ∩ J in

j (t) for i, j ∈ Vc;

(ii) Malicious if it must convey the same state trajectory to each
neighbor; i.e.,xai

≡ xaj
for all i, j ∈ Vc.

Both classes of adversaries are assumed to be omniscient and
behave in a worst case manner. Hence, the adversaries are able to
carefully select their continuous state trajectories to cause maximal
disruption to the consensus objective of the cooperative agents.

2.3 Problem Statement
Theadversarial asymptotic agreement problemis defined by two

conditions, agreement and safety, along with the type of adversary
considered. Theagreement conditionrequires that the state of the
cooperative agents,xc, converges to the agreement space,A =
span{1p} ⊂ R

p, despite the influence of the adversaries. That is,
givenq ≤ F adversaries andxc(0) ∈ R

p, then

xc(t) → A as t→ ∞. (2)

Thesafety conditionrequires that the state trajectory of each coop-
erative agent is contained in the interval formed by the initial states
of cooperative agents and that the limit exists, despite the influence
of the adversaries. That is, if we define the interval

I0 = [min
i∈Vc

xi(0),max
j∈Vc

xj(0)],

then the safety condition requires that givenq ≤ F adversaries,

xj(t) ∈ I0, ∀t ∈ R≥0 and lim
t→∞

xj(t) ∈ I0 exists, ∀j ∈ Vc. (3)

Equivalently, the safety condition can be stated in terms ofxc.
Let H0 = Ip

0 ⊂ R
p denote the hypercube formed by the Carte-

sian product ofp copies ofI0. Then the safety condition requires
xc(t) ∈ H0 for all t ≥ 0 andlimt→∞ xc(t) ∈ H0, despite the in-
fluence of the adversaries. It is important to explicitly require that
the limit exists because convergence to a single point is desired.

The safety condition in (3) is similar to the validity condition
defined in [8], which in turn was motivated by the validity condi-
tion of the Byzantine approximate agreement problem [2,11]. The
definition ensures that the value chosen by each normal node lies
within the range of good values. This is important in applications
where the values are measurements and only measurements within
the range obtained by the normal nodes are considered valid. The
safety condition entails this notion along with an invariant condi-
tion, which is important for safety critical applications.

3. CONSENSUS PROTOCOL
Here, we describe the Adversarial Robust Consensus Protocol

(ARC-P) with respect to parameterF ∈ Z≥0. The main idea of
the protocol is for each cooperative agenti ∈ Vc to sort the relative
states of its inclusive in-neighbors and then remove theF largest
andF smallest ones. This results inmi(t) = din

i (t)+1− 2F rela-
tive states ifdin

i (t) ≥ 2F , which are summed to determine the first
order dynamics of the agent. To make the protocol well-defined for
all network topologies, i.e., wheneverdin

i (t) < 2F , in this case the
agent removes all neighboring values from consideration and the
input is zero. This approach adheres to the philosophy that when-
ever there is insufficient information to act in a way that is resilient
to adversarial influence, it is best to do nothing.

In order to formally express ARC-P with parameterF , let ξi(t)
denote the vector of sorted values of the states in the inclusive in-
neighborhood of nodei at timet ∈ R≥0. The elements ofξi are

denoted byξ1i , . . . , ξ
din
i (t)+1

i and satisfy

ξ1i ≤ ξ2i ≤ · · · ≤ ξ
din
i (t)+1

i . (4)

Then, cooperative agenti ∈ Vc calculatesui = fi,σ(t)(xc, xai
) at

time t ∈ R≥0 by

fi,σ(t)(xc, xai
) =

{

∑din
i (t)+1−F

l=F+1

(

ξli(t)− xi(t)
)

din
i (t) ≥ 2F ;

0 din
i (t) < 2F .

(5)
If each cooperative agent uses ARC-P, then existence and unique-
ness of solutions to (1) is guaranteed∀t ≥ 0 sinceσ(t) is piece-
wise constant,xai

is continuous and effectively restricted to a com-
pact set with respect to (5) (see the discussion after Lemma 2), and
fi,σ(t)(xc, xai

) is globally Lipschitz inxc andxai
∀i ∈ Vc [8].

Figure 1 illustrates the computation that occurs at timet for co-
operative agenti wheneverdin

i (t) ≥ 2F . In the figure, the state,
xi(t), of the agent, whose dynamics areẋi(t) = ui(t), is sub-
tracted from each of the other states in its inclusive neighborhood,
with each of the in-neighbors denotedxji , j = 1, 2, . . . , din

i (t). The
resulting relative state values are sorted and then reduced by elim-
inating the largest and smallestF elements. Finally, the remaining
elements are summed to produce the control inputui(t) to the inte-
grator agent. The only difference ifdin

i (t) < 2F is that the output
of the Reduce block is0.

Figure 1: Synchronous data flow model of ARC-P for agenti.

From a complexity standpoint, ARC-P consists of low complex-
ity operations in both time and space, including sort, reduce, and
sum methods (see Figure 1). The worst performing subroutine of
ARC-P is the sort method. But, if quicksort is used, it is worst-case
quadratic in time and linear in space, with respect to the size of the
inclusive in-neighborhood. Therefore, ARC-P is also worst-case
quadratic in time and linear in space, and hence low complexity.



4. ANALYSIS
This section details the analysis of ARC-P with parameterF .

We begin by introducing a function that characterizes the maxi-
mum disagreement amongst the cooperative agents’ states. Define
Ψ: Rp → R by

Ψ(xc) = max
k∈Vc

{xk} − min
k∈Vc

{xk}. (6)

The functionΨ has several attractive properties:(i) it is nonneg-
ative with Ψ(xc) = 0 for all xc ∈ A andΨ(xc) > 0 ∀xc /∈
A, (ii) it is Lipschitz, (iii) it is increasing away fromA in the
sense thatΨ(y1) > Ψ(y2) ∀y1, y2 ∈ R

p satisfying dist(y1,A) >
dist(y2,A), and(iv) it is radially unbounded away fromA in the
sense thatΨ(y) → ∞ as dist(y,A) → ∞. These properties make
Ψ an excellent Lyapunov candidate for proving global convergence
to A. Ψ has been used to prove convergence of asynchronous con-
sensus algorithms whenever all nodes are cooperative [26].

But, one issue withΨ is that it is not everywhere differentiable.
Therefore, to study the monotonicity ofψ(t) = Ψ(xc(t)), we con-
sider theupper-right Dini derivativeD+ψ(t) of ψ at t, defined by

D+ψ(t) = lim sup
h→0+

ψ(t+ h)− ψ(t)

h
,

and theupper-directional derivativeof Ψ with respect to (1):

D+Ψ(xc, xa) = lim sup
h→0+

Ψ(xc + hfc,σ(t)(xc, xa))−Ψ(xc)

h
.

The motivation for considering the upper directional derivative of
Ψ is thatD+ψ(t) = D+Ψ(xc(t), xa(t)) for almost allt along
solutions of (1) sinceΨ is locally Lipschitz [21]. In this case,

D+Ψ(xc, xa) = lim sup
h→0+

N1(h)

h
+ lim sup

h→0+

N2(h)

h
, (7)

with N1(h) = max
i∈Vc

{xi + hfi,σ(t)(xc, xai
)} −max

i∈Vc

{xi},

N2(h) = min
i∈Vc

{xi} − min
i∈Vc

{xi + hfi,σ(t)(xc, xai
)}.

4.1 Preliminary Results
At this point, we derive some preliminary results that hold for all

network topologies. We begin with a fundamental result for ARC-
P that boundṡxc to a time-dependent compact convex set, which
includes the origin.

LEMMA 1. Consider the cooperative agenti ∈ Vc executing
ARC-P with parameterF ∈ Z≥0 and at mostF < n malicious or
Byzantine agents. Then, fort ∈ R≥0 andDσ(t) ∈ Γn

mi(t)(xi,lmin − xi) ≤ fi,σ(t)(xc, xai
) ≤ mi(t)(xi,lmax − xi),

wherexi,lmin(t) = min{xj |j ∈ J in
i (t) ∩ Vc} and xi,lmax(t) =

max{xj |j ∈ J in
i (t) ∩ Vc} are defined fort ∈ R≥0, and

mi(t) =

{

din
i (t) + 1− 2F if din

i (t) ≥ 2F ;

1 otherwise.

PROOF. If din
i (t) < 2F , fi,σ(t)(xc, xai

) = 0 and the result
follows. Therefore, assumedin

i (t) ≥ 2F . Since there are at most

F adversaries, we knowxi,lmin ≤ ξF+1
i andξ

din
i (t)+1−F

i ≤ xi,lmax.
Hence, (4) implies

mi (xi,lmin − xi) ≤
din
i (t)+1−F
∑

l=F+1

(ξli − xi) ≤ mi (xi,lmax − xi) .

While Lemma 1 restricts the behavior ofẋc almost everywhere,
the next result restricts the feasible trajectories ofxc(t). It shows
that the minimal hypercubeH0 formed by the initial values of the
cooperative agents isrobustly positively invariant.

DEFINITION 2. The setS ⊂ R
p is robustly positively invariant

for the system given by (1) if for allxc(0) ∈ S, xai
(t) ∈ R

q

i ∈ Vc, andt ≥ 0, the solution satisfiesxc(t) ∈ S.

LEMMA 2. Suppose the cooperative agents inVc execute ARC-
P with parameterF ∈ Z≥0 and at mostF < n malicious or
Byzantine agents. Then, for everyDσ(t) ∈ Γn the hypercube

H0 = {y ∈ R
p|x0,min ≤ yi ≤ x0,max, i = 1, 2, . . . , p},

wherex0,min = mini∈Vc{xi(0)} andx0,max = maxi∈Vc{xi(0)},
is robustly positively invariant for the system (1).

PROOF. SinceH0 is compact and any solution of (1) using (5) is
continuous withxc(0) ∈ H0, we must show thatfc,σ(t)(xc, xa) is
not directed outside ofH0, wheneverxc(t) ∈ ∂H0, for allDσ(t) ∈
Γn andxai

(t) ∈ R
q for i ∈ Vc. The boundary∂H0 is given by

∂H0 = {y ∈ H0|∃i ∈ {1, 2, . . . , p} s.t.yi ∈ {x0,min, x0,max}}.
Fix xc(t) ∈ ∂H0. Let ej denote thej-th canonical basis vector

and denoteIxc,min, Ixc,max ⊆ {1, 2, . . . , p} as the sets defined by

j ∈ Ixc,min ⇔ xj = x0,min andk ∈ Ixc,max ⇔ xk = x0,max.

Then, from the geometry of the hypercube, we require

eTj fc,σ(t)(xc, xa) ≥ 0 ∀j ∈ Ixc,min,

eTkfc,σ(t)(xc, xa) ≤ 0 ∀k ∈ Ixc,max.

These conditions are true for allDσ(t) ∈ Γn andxai
(t) ∈ R

q

with i ∈ Vc by Lemma 1, in which the lower bound is used for
j ∈ Ixc,min sincexj = xj,lmin = x0,min, and the upper bound is
used fork ∈ Iy,max sincexk = xk,lmax = x0,max.

The argument made in Lemma 1 implies that any time an ad-
versary is outside ofIt = [mini∈Vc{xi(t)},maxi∈Vc{xi(t)}], its
influence is guaranteed to be removed by its cooperative neighbors,
and therefore has the same effect as if it were on the boundary of
It. Using Lemma 2 we concludeIt ⊆ I0, ∀t ≥ 0. Hence, each
adversary is effectively restricted to the compact setI0, with re-
spect to (1). This fact enables us to allow adversary states inR

q

rather than explicitly restricting them to a compact set, while still
ensuring existence and uniqueness of solutions. Next, we derive an
explicit equation forD+Ψ(xc, xa), valid at a fixed timet ≥ 0.

LEMMA 3. Fix t ≥ 0 andxc(t) ∈ R
p. Suppose each coopera-

tive agent inVc executes ARC-P with parameterF ∈ Z≥0 and at
mostF < n Byzantine or malicious agents. LetDσ(t) ∈ Γn and
defineSmin(t),Smax(t) : R → {1, . . . , p} by

j ∈ Smin(t) ⇔ xj(t) = min
i∈Vc

{xi(t)},

k ∈ Smax(t) ⇔ xk(t) = max
i∈Vc

{xi(t)}.

Fix jt ∈ Smin(t) such that

fjt,σ(t)(xc, xajt
) ≤ fj,σ(t)(xc, xaj

), ∀j ∈ Smin(t).

Likewise, fixkt ∈ Smax(t) such that

fkt,σ(t)(xc, xakt
) ≥ fk,σ(t)(xc, xak

), ∀k ∈ Smax(t).

Then, at timet, we have

D+Ψ(xc(t), xa(t))=fkt,σ(t)(xc, xakt
)−fjt,σ(t)(xc, xajt

), (8)

andD+Ψ(xc, xa) ≤ 0 for all t ≥ 0.



PROOF. Let mt,max = maxi∈Vc{mi(t)}, wheremi(t) is de-
fined in Lemma 1. Lemma 1 implies that

−mt,maxΨ(xc) ≤ fi,σ(t)(xc, xai
) ≤ mt,maxΨ(xc)

holds∀i ∈ Vc. If xc(t) /∈ A, then there existsǫmin > 0 such
thatxi − xj ≥ ǫmin > 0 for all j ∈ Smin(t) andi ∈ Vc \ Smin(t).
Similarly, there existsǫmax > 0 such thatxk−xi ≥ ǫmax for all k ∈
Smax(t) andi ∈ Vc \ Smax(t). Then, by lettingǫ = min{ǫmin, ǫmax}
and takingh ≤ ǫ/(2mt,maxΨ(xc(t))), we may write

xi + hfi,σ(t)(xc, xai
) ≥ xi − hmt,maxΨ(xc(t))

≥ xi − ǫ/2

≥ xj + ǫ/2

≥ xj + hmt,maxΨ(xc(t))

≥ xj + hfj,σ(t)(xc, xaj
)

≥ xjt + hfjt,σ(t)(xc, xajt
)

for all i ∈ Vc \ Smin(t), j ∈ Smin(t). Therefore, at timet

min
i∈Vc

{xi + hfi,σ(t)(xc, xai
)} = xjt + hfjt,σ(t)(xc, xajt

).

Following a similar argument, we deduce

max
i∈Vc

{xi + hfi,σ(t)(xc, xai
)} = xkt + hfkt,σ(t)(xc, xakt

).

Combining this with (7), gives (8). On the other hand, ifxc(t) ∈
A then bothΨ(xc) andD+Ψ(xc, xa) are zero. Finally, apply-
ing Lemma 1 withxjt,lmin = xjt andxkt,lmax = xkt shows that
D+Ψ(xc, xa) ≤ 0.

Notice in (8) that the agents acting askt andjt may change with
time. It will be important to show in the convergence argument
that bounds onD+Ψ(xc, xa) hold for all t ∈ R≥0, regardless
of which cooperative agents fill the roles ofkt andjt. Next, we
show thatΨ(xc) is bounded by scaled versions of dist(xc,A) =
infy∈A ||xc − y||2. For this argument, we use the following prop-
erties of the min and max functions. Ifα ∈ R, then

min
i∈Vc

{xi + α} = min
i∈Vc

{xi}+ α

max
i∈Vc

{xi + α} = max
i∈Vc

{xi}+ α.
(9)

LEMMA 4. Givenxc ∈ R
p, Ψ(xc) is bounded by

1√
p

dist(xc,A) ≤ Ψ(xc) ≤ 2dist(xc,A), (10)

PROOF. Consider the decomposition ofxc: xc = vA + vA⊥ ,
in which vA ∈ A andvA⊥ ∈ A⊥. Given this decomposition, we
conclude‖vA⊥‖2 = dist(xc,A) and∃γ ∈ R such thatvA = γ1p.
Because of this, we can use (9) to write

Ψ(xc) = max
i∈Vc

{(vA⊥)i} − min
i∈Vc

{(vA⊥)i}, (11)

in which (vA⊥)i is thei-th element ofvA⊥ . From this, we obtain
the upper bound

Ψ(xc) ≤ max
i∈Vc

{(vA⊥)i}+ |min
i∈Vc

{(vA⊥)i}| ≤ 2‖vA⊥‖2.

On the other hand, sincevA⊥ ∈ A⊥,
∑p

i=1(vA⊥)i = 0, so that
maxi∈Vc{(vA⊥)i} ≥ 0 andmini∈Vc{(vA⊥)i} ≤ 0. From this
and (11) we concludeΨ(xc) ≥ |(vA⊥)j | for all j ∈ Vc. Thus, we
obtain the lower bound

1√
p
‖vA⊥‖2 ≤ 1√

p

√

pΨ2(xc) = Ψ(xc).

In the sequel, we first consider fixed network topology, and prove
exponential convergence ofxc(t) to A for a subset of network
topologies by using properties ofΨ(xc) andD+Ψ(xc, xa). We
then combine the agreement result with an invariant set argument
to prove safety. Afterwards, we prove a necessary condition, and
then generalize the results to the case of switching topology by us-
ingΨ as a common Lyapunov function.

4.2 Fixed Topology
In this section, we assume thatσ(t) ≡ s andDs belongs to

ΓM,F ⊂ Γn or ΓB,F ⊂ Γn whenever the adversaries are, re-
spectively, malicious or Byzantine. When dealing with malicious
agents, we consider the following class of digraphs with restricted
in-degrees or out-degrees, defined by

ΓM,F = {Dk ∈ Γn| at least one ofM1F andM2F holds},
(12)

where

M1F : δ
in(Dk) ≥ ⌊n/2⌋+ F ;

M2F : ∃S ⊆ V(Dk), |S| ≥ 2F+1, such thatdout
i =n−1, ∀i ∈ S.

When dealing with Byzantine agents, we require stronger assump-
tions on the in-degrees and out-degrees. In this case, we define

ΓB,F = {Dk ∈ Γn| at least one ofB1F andB2F holds}, (13)

where

B1F : δ
in(Dk) ≥

{

n/2 + ⌊3F/2⌋ if n is even andF is odd;

⌊n/2⌋+ ⌈3F/2⌉ otherwise.

B2F : ∃S ⊆ V(Dk), |S| ≥ 3F+1, such thatdout
i =n−1, ∀i ∈ S.

It follows from these definitions thatΓB,F ⊆ ΓM,F . Addition-
ally, the conditions in (12) and (13) implicitly bound the maximum
number of adversariesF by a function of the total number of agents
n. Specifically, propertyM1F implies

n− 1 ≥ δin(Ds) ≥ ⌊n/2⌋+ F =⇒ F ≤ ⌈n/2⌉ − 1.

Similarly, propertyM2F implies

n ≥ |S| ≥ 2F + 1 =⇒ 2F ≤ n− 1.

In either case,n > 2F . Analogously, the propertiesB1F and
B2F imply n > 3F . Therefore, it follows thatF ≤ ⌈n/2⌉ − 1
(or F ≤ ⌈n/3⌉ − 1) wheneverDs ∈ ΓM,F (or Ds ∈ ΓB,F ). A
consequence of this is thatδin(Ds) ≥ 2F for all Ds ∈ ΓM,F (or
Ds ∈ ΓB,F ). Hence, in this case, (8) may be rewritten using (5) as

D+Ψ(xc, xa) =

din
kt

(t)+1−F
∑

m=F+1

(ξmkt
− xkt)−

din
jt

(t)+1−F
∑

l=F+1

(

ξljt − xjt

)

. (14)

This equation is the basis of the agreement argument below.

4.2.1 Agreement
Here we combine Lemmas 3 and 4 with the assumptionDs ∈

ΓM,F or Ds ∈ ΓB,F for malicious or Byzantine adversaries, re-
spectively, in order to show global exponential convergence ofxc
toA.

THEOREM 1. Suppose each cooperative agent inVc executes
ARC-P with parameterF ∈ Z≥0 and at most(i) F malicious
agents withDs ∈ ΓM,F , or (ii) F Byzantine agents withDs ∈
ΓB,F . Thenxc globally exponentially converges to the agreement
spaceA, and therefore the agreement condition (2) is satisfied.
Moreover, the convergence to the agreement space is bounded by

dist(xc(t),A) ≤ 2
√
p dist(xc(0),A)e−t. (15)



PROOF. (i) Fix t ≥ 0 and consider (14). Since there are at
mostF adversaries, each term in the first sum is nonpositive and
each term in the second sum is nonnegative. If at least one of the
sorted values in the second sum is greater than or equal to any of
the values in the first, sayξm

′

kt
≤ ξl

′

jt , then

D+Ψ(xc, xa) ≤ −Ψ(xc), (16)

since, in this case,

D+Ψ(xc, xa) =

din
kt

(t)+1−F
∑

m=F+1

m 6=m′

(ξmkt
− xkt)−

din
jt

(t)+1−F
∑

l=F+1

l 6=l′

(ξljt − xjt)

+
(

ξm
′

kt
− ξl

′

jt

)

−Ψ(xc) ≤ −Ψ(xc).

A sufficient condition for this to hold, given thatall agents convey
the same values to all neighbors, is to ensure there is a common
value in the two sums, e.g.,ξm

′

kt
= ξl

′

jt . This is guaranteed if|J in
jt ∩

J in
kt
| > 2F , which is obviously true if propertyM2F holds. If only

propertyM1F holds, it must also be the case, since otherwise, we
reach the contradiction

n ≥ |J in
jt ∪ J in

kt
| = |J in

jt |+ |J in
kt
| − |J in

jt ∩ J in
kt
|

≥ 2(⌊n
2
⌋+ F + 1)− 2F ≥ n+ 1.

Therefore, (16) holds for allt ≥ 0, and hence it can be shown that

Ψ(xc(t)) ≤ Ψ(xc(0))e
−t.

Finally, using (10), we conclude (15). Thus, we have shown global
exponential convergence ofxc toA.
(ii) The argument is identical to(i), except here to ensure there

existsm′ andl′ such thatξm
′

kt
= ξl

′

jt and thereby guarantee (16),
we need|J in

jt ∩ J in
kt
| > 3F . This is required if there areF Byzan-

tine agents in the intersection because of the following argument.
SupposeF of the cooperative agents’ states are strictly greater than
F other cooperative agents in the intersection. Then there are3F
agents in the intersection, and the adversaries may create2F differ-
ent values all strictly between these two sets of cooperative agent
states. Thus, at least one more cooperative agent in the intersection
is necessary to ensure a common value. Analogously to(i), prop-
ertyB2F guarantees|J in

jt ∩ J in
kt
| > 3F by construction, and so

does propertyB1F . Otherwise, we reach the contradiction

n ≥
{

2(n
2
+ ⌊ 3F

2
⌋+ 1)− 3F ≥ n+ 1 n even &F odd;

2(⌊n
2
⌋+ ⌈ 3F

2
⌉+ 1)− 3F ≥ n+ 1 otherwise.

Notice in the proof of Theorem 1 that it is not necessary that there
exists a common in-neighbor in the reduced set of in-neighbors of
jt andkt to show (16), and therefore (15). All that is required is
that there existξm

′

kt
andξl

′

jt such thatξm
′

kt
≤ ξl

′

jt . However, because
this must hold globally (i.e., for allxc(0) ∈ R

p andxai
(t) ∈ R

p

for i ∈ Vc) and for allt ≥ 0, it is untenable to depend on the values
in those neighborhoods without insisting that there is a cooperative
agent as a common in-neighbor.

4.2.2 Safety
In this section, we verify that the safety condition (3) holds by

using an invariant set argument.

THEOREM 2. Suppose each cooperative agent inVc executes
ARC-P with parameterF ∈ Z≥0 and at most(i) F malicious
agents withDs ∈ ΓM,F , or (ii) F Byzantine agents withDs ∈
ΓB,F . Then the safety condition (3) is satisfied.

PROOF. Lemma 1 implies that for eachi ∈ Vc

− (n− 2F )Ψ(xc) ≤ fi,σ(t)(xc, xai
) ≤ (n− 2F )Ψ(xc). (17)

It was shown in the proof of Theorem 1 that under either(i) or (ii),
limt→∞ Ψ(xc(t)) = 0. Hence, (17) implies

lim
t→∞

fi,σ(t)(xc, xa) = 0,

and thuslimt→∞ xi(t) exists. SinceH0 is compact, Lemma 2
implies the result.

4.3 Necessary Condition
Next, we consider the following necessary condition for ARC-P

to achieve agreement in networks with fixed topology.

THEOREM 3. Consider a networked multi-agent system that ex-
ecutes ARC-P with parameterF ∈ Z≥0 and at mostF < n ma-
licious or Byzantine agents. If the agreement condition is satisfied,
thenδin(Ds) ≥ 2F .

PROOF. The caseF = 0 is vacuously true, so assumeF ≥
1. Suppose∃i ∈ Vc with din

i < 2F and ∃ǫ > 0 such that
xj(0) − xi(0) > ǫ ∀j ∈ Vc \ {i}. If din

i ≥ F − 1, let F − 1
of i’s in-neighbors be adversaries with values smaller thanxi(0).
Then,ẋi ≡ 0 since both the cooperative and adversary values are
removed. On the other hand, using Lemma 2 while treatingi as an
adversary, ensuresxj(t)− xi(t) > ǫ ∀j ∈ Vc \ {i} andt ≥ 0.

Recall that the sufficient conditions imply the necessary condi-
tion, δin(Ds) ≥ 2F . However, the converse is clearly not true. The
question then arises, are the sufficient conditions also necessary?
The answer is no, but we delay further discussion of the conserva-
tiveness of the sufficient conditions until Section 5. Next, we study
the sufficient conditions under switching network topologies.

4.4 Switching Topology
Switching network topologies can arise from a number of fac-

tors: temporary removal of edges due to lossy communication chan-
nels, the addition or loss of edges caused by mobile agents, and so
on. The results of the previous sections may be extended to switch-
ing topologies in a straightforward manner by assumingDσ(t) ∈
ΓM,F or Dσ(t) ∈ ΓB,F for t ≥ 0 whenever the adversaries are
malicious or Byzantine, respectively. It is shown in Theorem 1 that
Ψ is a Lyapunov function for each possible digraphDs ∈ ΓM,F

or Ds ∈ ΓB,F . Further, the upper bound on convergence ofxc
to A (15) holds globally and for each digraphDs ∈ ΓM,F or
Ds ∈ ΓB,F . Therefore,Ψ is a common Lyapunov function, thus
proving global exponential convergence ofxc toA for the switched
system (1). On the other hand, Lemma 2 and (17) hold for all net-
work topologies. Therefore, the same argument used in the proof
of Theorem 2 may be used for the case of switching topologies.
Hence, we have the following result.

COROLLARY 1. Suppose each cooperative agent inVc executes
ARC-P with parameterF ∈ Z≥0 and at most(i) F malicious
agents withDσ(t) ∈ ΓM,F for all t ∈ R≥0, or (ii) F Byzantine
agents withDσ(t) ∈ ΓB,F for all t ∈ R≥0. Then the agreement
condition (2) is satisfied with the convergence to the agreement
space bounded by (15), and the safety condition (3) is satisfied.
Therefore, under these conditions, ARC-Psolves the adversarial
asymptotic agreement problem in the presence of(i) malicious and
(ii) Byzantine agents.

So far we have studied explicit switching in the network topology
when the range of the switching signal is appropriately restricted



(i.e.,Dσ(t) ∈ ΓM,F or Dσ(t) ∈ ΓB,F for all t ∈ R≥0). But, even
in fixed network topology, the algorithm ARC-P may be viewed as
the linear consensus protocol of [14] with state-dependent switch-
ing. In ARC-P, the sort and reduce functions effectively remove the
influence of a subset of neighbors based on the state values of those
neighbors. The remaining relative states are summed as input to the
integrator in the same manner as all of the neighbors are in the lin-
ear consensus protocol of [14], which justifies the analogy. Hence,
the results of Section 4.2 provide new insight into the convergence
of the protocol of [14] with state-dependent switching.

5. EXAMINATION OF CONDITIONS
In this section, we examine the conditionsM1F andM2F that

defineΓM,F andB1F andB2F that defineΓB,F . Important ques-
tions arise with regard to these properties:(i) How do these con-
ditions relate to known conditions on the maximum number of
Byzantine processors in the network [1, 7];(ii) How do they re-
late to conditions on the connectivity of the network when reaching
agreement with Byzantine processors [1], or detecting and isolating
malicious agents [18,24];(iii) How conservative are the conditions
with respect to achieving the adversarial agreement problem using
ARC-P; and(iv) How applicable are the conditions to networks
of interest? The first question has been answered in Section 4.2,
where we showed thatB1F andB2F imply n > 3F , which is a
necessary condition when dealing with Byzantine behavior of finite
automata in synchronous networks [1,7]. The rest of this section is
devoted to addressing the remaining questions.

To address(ii), we show thatM1F andM2F –and therefore also
B1F andB2F –imply κ(D) ≥ 2F + 1, which is a necessary and
sufficient condition for the existence of an algorithm that can(a)
ensure agreement of the nonfaulty nodes in the presence of at most
F Byzantine nodes in synchronous networks [1], or(b) detect and
isolate up toF malicious nodes in linear consensus networks [18,
24].

THEOREM 4. If F ∈ {0, 1, . . . , ⌊n/2⌋ − 1} and the digraph
satisfies(i)M1F or (ii)M2F , thenD is 2F + 1-connected.

PROOF. (i) Fix F ∈ {0, 1, . . . , ⌊n/2⌋ − 1} and consider the
underlying graphG, which must satisfyδ(G) ≥ ⌊n/2⌋ + F . By
Menger’s Theorem,κ(G) ≥ 2F + 1 is equivalent toG having
at least2F + 1 vertex-disjoint paths between any distinct vertices
i, j ∈ V. Indeed, this is the case if|Ji ∩ Jj | ≥ 2F + 2 for all
i, j ∈ V. On the other hand, we know that|Ji∩Jj | ≥ 2F +1 (c.f.
the proof of Theorem 1). From this we conclude that if(i, j) /∈ EG

then there are at least2F + 1 vertex-disjoint paths betweeni and
j. Therefore, assume there existsi, j ∈ V such that(i, j) ∈ EG

and|Ji ∩ Jj | = 2F + 1. In this case, there are2F vertex-disjoint
paths accounted for with vertices inJi ∩ Jj . But, becauseF ≤
⌊n/2⌋ − 1, we know

|Ji|, |Jj | ≥ ⌊n/2⌋+ F + 1 ≥ 2F + 2,

which means there existsi′ ∈ Ji \ Ji ∩ Jj andj′ ∈ Jj \ Ji ∩
Jj . If (i′, j′) ∈ EG , theni, i′, j′, j is the last vertex-disjoint path
necessary to conclude2F + 1-connectivity. If(i′, j′) /∈ EG , then
we know that|Ji′ ∩ Jj′ | ≥ 2F + 1, and there are at most2F − 1
vertices in(Ji′ ∩ Jj′) ∩ (Ji ∩ Jj) becausei andj cannot be in
Ji′ ∩ Jj′ . Hence, there existsm ∈ Ji′ ∩ Jj′ \ Ji ∩ Jj , so that
i, i′,m, j′, j is the last vertex-disjoint path necessary to conclude
2F + 1-connectivity.
(ii) Any vertex cut must contain at least2F+1 vertices, because

otherwise a vertex remains inS adjacent to all other vertices.

To address the conservativeness of the conditions with respect
to convergence of ARC-P, we show that we can do no better using

Figure 2: RelaxM1F with δin(D) = ⌊n/2⌋+ F − 1.

traditional metrics such as in-degree, out-degree, or connectivity.
We do this by demonstrating that minimally relaxing these con-
ditions leads to pathological examples with high connectivity in
which ARC-P does not achieve agreement.

Example 1 [RelaxM1F with δin(D) = ⌊n/2⌋+F − 1]. Con-
sider the network topology in Figure 2, in whichK⌈n/2⌉ is the
complete digraph on⌈n/2⌉ vertices, and each vertex inX has ex-
actly F neighbors inY and each vertex inY has eitherF − 1
or F neighbors inX. Now, assume there are no adversaries and
let all states inX have value0 and all states inY have value1.
Then, by (5), all agents inX will remove the influence of their
neighbor inY and vice versa. Hence, no consensus is reached,
and no agent even changes its state. Furthermore, this graph is
(⌊n/2⌋+F −1)-connected, which for largenmay be much larger
thanκ(D) ≥ 2F + 1.

From this example, we see that reducing the minimum in-degree
by just one fromM1F is not sufficient for global convergence of
xc to A. Additionally, in this example, the connectivity is very
high. This suggests that the minimum in-degree and connectiv-
ity are not appropriate metrics to use in characterizing the network
toplogies in which ARC-P achieves agreement. The following ex-
ample demonstrates that the minimum out-degree is also inade-
quate and further emphasizes the inadequacy of connectivity. Here,
the number of nodes inS fromM2F is reduced by one.

Example 2 [RelaxM2F with |S| = 2F anddout
i = n−2, ∀i ∈

V \S, so thatδout(D) = n−2]. Consider the example of Figure 3,
which has|S| = 2F , with S = S ′∪{j} anddin

i = n−2, ∀i ∈ V \
S, so thatδout(D) = n−2. Sincedin

j = 2F −1, this example does
not satisfy the necessary condition of Theorem 3. The argument in
the proof shows that the agreement condition is not satisfied. Since
the underlying graph is complete, this digraph is(n−1)-connected,
which emphasizes the inadequacy of connectivity in characterizing
the convergence properties of ARC-P.

Figure 3: RelaxM2F with |S| = 2F and δout(D) = n− 2.

Example 3 [RelaxB1F with δin(D) = n/2 + ⌊3F/2⌋ − 1
if n is even andF is odd, andδin(D) = ⌊n/2⌋ + ⌈3F/2⌉ − 1
otherwise]. Consider the digraph shown in Figure 4. In the fig-
ure, the digraph is partitioned into 3 cliques (i.e., complete subdi-



graphs),D = X1 ∪X2 ∪X3, and each clique has⌊n/2⌋−⌊F/2⌋,
F , and ⌈n/2⌉ − ⌈F/2⌉ nodes, respectively. For clarity, we do
not show edges internal to the cliques. We only show one rep-
resentative node from the setsX1 andX3, but all nodes in each
of these sets haveF in-neighbors in each of the other two sets–
which is possible sincen > 3F . This leads to an in-degree of
din
i = ⌊n/2⌋ + ⌈3F/2⌉ − 1 for eachi ∈ X1, and an in-degree

of din
j = ⌈n/2⌉ + ⌊3F/2⌋ − 1 for eachj ∈ X3. On the other

hand, the nodes inX2 exchange information bidirectionally with
all other nodes, so thatdin

k = dout
k = n − 1 for all k ∈ X2.

Therefore, the minimum in-degree depends on the parity ofn and
F . If they have the same parity,|X1| = |X3|, and δin(D) =
⌊n/2⌋+ ⌈3F/2⌉ − 1. If n is odd andF is even,|X3| = |X1|+1,
andδin(D) = ⌊n/2⌋+ ⌈3F/2⌉−1. But, if n is even andF is odd,
|X3| = |X1| − 1, andδin(D) = n/2+ ⌊3F/2⌋− 1, which means,
in any case,B1F is minimally relaxed.

To show that ARC-P may not achieve agreement in this digraph,
let each node inX1 andX3 have initial value 1 and 3, respectively.
Suppose all nodes inX2 are Byzantine, and they transmit a constant
trajectory of 1 to nodes inX1 and 3 to nodes inX3. Then nodes
in X1 remove the influence from theirF neighbors inX3 and vice
versa, so that agreement fails.

Figure 4: RelaxB1F with δin(D) = n/2 + ⌊3F/2⌋ − 1 if n is
even andF is odd, andδin(D) = ⌊n/2⌋+⌈3F/2⌉−1 otherwise.

Example 4 [RelaxB2F with |S| = 3F andS = S1∪S2∪S3].
Consider the digraph in Figure 5. In this example,S = S1 ∪
S2 ∪ S3, with |Si| = F for i = 1, 2, 3. The remaining nodes in
V \ S form a clique,Kn−3F . Nodes inS1 andS3 have value 1
and 3, respectively, and nodes inV \ S have value 2. Nodes inS2

are Byzantine and send values 1, 2, and 3, respectively, to nodes
in S1, V \ S, andS3. Clearly, as in the previous examples, the
cooperative nodes do not reach agreement, but remain fixed at their
initial values.

Figure 5: RelaxB2F with |S| = 3F and S = S1 ∪ S2 ∪ S3.

Although this section is replete with pathological examples in
which ARC-P fails to achieve agreement–even when the networks

have high minimum degrees and high connectivity–the news is not
all bad. First, we now know that the sufficient conditions studied in
Section 4.2 are the best we can have using minimum degrees and
connectivity. Second, we can discern a pattern in the various ex-
amples. A common property is that there are pairs of subsets with
high connectivity within the subsets, but nodes in each subset have
relatively few in-neighbors outside of their subsets. Therefore, new
toplogical conditions for digraphs that deal with (a) pairs of subsets
of nodes and (b) the number of nodes with “enough” in-neighbors
outside of their respective subset will be crucial to better under-
standing the convergence properties of ARC-P. Finally, we end the
section by demonstrating the results with the following example.

Example 5: [Morale dynamics on fixed topology with sin-
gle Byzantine agent]Consider a variation of the Byzantine gen-
erals problem in which the loyal generals attempt to improve the
morale of their troops and reach consensus on the level of morale
despite the influence of a subset of Byzantine generals. In addi-
tion, the troops have no knowledge of the goal of the generals. For
the purposes of this example, the state value represents the level of
morale. The sign of the value indicates either good (positive) or bad
(negative) morale and the magnitude signifies the relative levels of
morale. Here, we assume that the morale dynamics of each node
behave as an integrator with the input (influence) either given by
ARC-P, as in (5), or simply by the sum of relative morale values:

ẋi(t) =
∑

j∈Ni

(xj(t)− xi(t)) , xi(0) = x0i , (18)

wherexi(t) is the morale value of nodei andx0i is the initial
morale value of nodei. We refer to the influence rule of (18) as
the linear consensus protocol (LCP), which is a special case of the
weighted sum of relative states studied extensively in the litera-
ture [14], and has been compared with ARC-P in the special case
of complete networks in [8].

Each general is able to continuously influence all of the troops
and the other generals, and the generals can provide different in-
fluence to different individuals. The influence network is shown in
Figure 6, in which nodes 17 through 20 form a clique and are the
generals (shown as squares). The other nodes are the troops (shown
as circles). Troopi has initial morale−i, for i = 1, . . . , 16, and
the generals have initial morale of 1, 2, 3, and 4, respectively, for
nodes 17, 18, 19, and 20.

The central question of this example is whether either LCP or
ARC-P can ensure that the troops reach asymptotic consensus on
a positive morale given that it is possible that one of the generals
is Byzantine (i.e.,F = 1). Observe that the network of Figure 6
satisfiesB2F wheneverF = 1, with S = {17, 18, 19, 20}, and
can therefore sustain the compromise of a single node as Byzantine
whenever the troops and loyal generals use ARC-P. In this case, we
choose node 20 to be the Byzantine general. In order to elude de-
tection, the Byzantine general conveys a morale trajectory that sat-
isfies the preassigned strategy–either ARC-P or LCP–to the other
generals. But, to the troops, the Byzantine general conveys a highly
negative morale of−87.5. The results for LCP and ARC-P are
shown in Figure 7. The Byzantine morale trajectory shown in the
figures is the one conveyed to the other generals. Using LCP, the
troops reach consensus at a negative morale of−20 and the gener-
als reach consensus at 2.5, whereas with ARC-P the troops reach
consensus at the same value of the other generals at 2.5.

This example illustrates an important property of ARC-P:It only
requires local information for resilience against adversaries. In
contrast, without nonlocal information, the detection and identifi-
cation techniques of [16–19, 22–25] would not successfully detect
the Byzantine general. This is because from the perspective of the



Figure 6: Influence network in which square nodes are gener-
als and circular nodes are troops. Node 20 is Byzantine.

loyal generals, the Byzantine general behaves as it should and they
receive no feedback from the troops. From the perspective of the
troops, the Byzantine general appears to be influenced by no other
node. Hence, without prior knowledge of at least some nonlocal
aspects of the network topology, the Byzantine general remains un-
detected.

6. RELATED WORK
The research most closely related to this work is [16–19,22–25].

In [16], the issue of detecting and identifying a single misbehaving
agent using a linear iterative strategy in discrete-time synchronous
networks is introduced. Then, Sundaram and Hadjicostis show in
[22] thatκ(G) ≥ 2F +1 is a necessary condition for detecting and
identifying up toF malicious agents using linear iterations in syn-
chronous networks. In the companion paper [23],κ(G) ≥ 2F + 1
is shown to be sufficient for the problem. In this case, the linearity
of the protocol is exploited so that every node is able to calculate
the initial values exactly, and thus any function of the initial states,
in at mostn steps. The results of [22,23] are generalized in [24] to
characterize under which conditions any subset of nodes can obtain
all of the initial values.

The authors of [16], later extend the analysis done in [22,23] by
characterizing the type of behavior of the malicious agents that is
most troublesome to the linear network and by characterizing the
network connectivity required to tolerate both malicious agents and
non-colluding agents in [17]. A computationally expensive but ex-
act algorithm is presented in [17] to detect and identify up toF
malicious agents in networks with connectivity at least2F + 1.
This exact algorithm requires each node to know the topology of
the entire network. In [19], two approaches are considered to re-
duce the computational complexity and require only partial net-
work information. The first assumes the network is comprised of
weakly interconnected subcomponents and restricts the behavior of
the misbehaving nodes. The second imposes a hierarchical struc-
ture to detect and isolate the malicious agents. These results are
combined and extended in [18].

In [25], the authors study detection and identification of cyber
attacks on networked control systems modeled as continuous-time
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(b) ARC-P.

Figure 7: Byzantine general attempts to reduce morale of the
troops. Byzantine morale shown is the one conveyed to other
generals. Byzantine morale conveyed to troops is−87.5. ARC-
P succeeds in the goal of improving the morale while reaching
consensus, but LCP fails.

linear systems. Attacks on nodes and on their outgoing commu-
nication channels are both studied, and it is shown that from the
perspective of other nodes, the two cases are indistinguishable. As
in [18], unknown input observers are used for the FDI scheme. The
approach is demonstrated on a network of nodes using the linear
consensus protocol of (18) augmented with the FDI scheme, and
on the swing equation of a power network.

There are several differences between the related works and this
paper. First, the aforementioned works require nonlocal informa-
tion on the network topology to ensure consensus. ARC-P requires
only local information. Second, the computational burden of the
FDI algorithms is greater than ARC-P, which is low complexity.
Third, we study directed information flow in both fixed and switch-
ing topologies. The FDI schemes would not be able to handle this
case because of the nonlocal information required on the network
topology. Fourth, the other works do not consider safety condi-
tions and are therefore not suitable for safety critical applications.
Lastly, we study both malicious and Byzantine agents, whereas the
aforementioned works do not consider Byzantine agents.

Finally, the reader may wonder how this paper relates to robust



consensus algorithms designed to withstand outliers [9, 13]. The
problem of robust consensus to outliers does not assume a threat
model, such as malicious or Byzantine nodes. Instead, some mea-
surements may be statistical outliers caused by noisy measurements
and the goal is to reach consensus on the measurements in a manner
that reduces the error introduced by the outliers. In these works the
nodes with outlier measurements are cooperative in the consensus
process. Therefore, such techniques are not designed to work in the
presence of adversaries.

7. CONCLUSIONS
In this paper, we have studied a low complexity protocol (algo-

rithm), ARC-P, for reaching consensus in networked multi-agent
systems with adversaries. We formulated a consensus problem,
the adversarial asymptotic agreement problem, appropriate for dis-
tributed control applications. We defined two different models for
adversaries depending on how information is conveyed. Malicious
agents must convey the same information to each neighbor, whereas
Byzantine agents may convey different information to each neigh-
bor. We analyzed the convergence properties of ARC-P in directed
networks with fixed and switching topologies in the presence of
malicious and Byzantine agents, while restricting the range of the
switching signal so that each topology satisfies sufficient conditions
on the in-degrees and out-degrees of nodes in the network. Finally,
we examined the conservativeness of the conditions.

Based on the examples in Section 5, it is clear that traditional
graph theoretic metrics like minimum degree and connectivity are
not suitable for characterizing under which conditions ARC-P en-
sures agreement. Therefore, to ascertain conditions which are both
necessary and sufficient, new graph theoretic metrics are needed.

8. ACKNOWLEDGMENTS
The authors would like to thank Shreyas Sundaram for suggest-

ing the example of Figure 2. This work is supported in part by
the National Science Foundation (CNS-1035655, CCF-0820088),
the U.S. Army Research Office (ARO W911NF-10-1-0005), and
Lockheed Martin.

9. REFERENCES
[1] D. Dolev. The Byzantine generals strike again.Journal of

Algorithms, 3(1):14 – 30, 1982.
[2] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E.

Weihl. Reaching approximate agreement in the presence of
faults.Journal of the ACM, 33(3):499 – 516, 1986.

[3] J. A. Fax and R. M. Murray. Information flow and
cooperative control of vehicle formations.IEEE Trans. on
Aut. Control, 49(9):1465 – 1476, 2004.

[4] D. Geller and F. Harary. Connectivity in digraphs. InRecent
Trends in Graph Theory, volume 186 ofLect. Notes in Math.,
pages 105–115. Springer Berlin / Heidelberg, 1971.

[5] V. Gupta, C. Langbort, and R. Murray. On the robustness of
distributed algorithms. InIEEE Conf. on Decision and
Control, Dec. 2006.

[6] T. T. Johnson and S. Mitra. Safe flocking in spite of actuator
faults using directional failure detectors.Journal of
Nonlinear Sys. and App., 2(1-2):73–95, 2011.

[7] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem.ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[8] H. J. LeBlanc and X. D. Koutsoukos. Consensus in
networked multi-agent systems with adversaries. InProc. of

the 14th Int. Conf. on Hybrid systems: Computation and
Control, (HSCC ’11), pages 281–290, Chicago, IL, 2011.

[9] J. Li, E. Elhamifar, I.-J. Wang, and R. Vidal. Consensus with
robustness to outliers via distributed optimization. InIEEE
Conf. on Decision and Control, pages 2111–2117, Dec.
2010.

[10] D. Liberzon.Switching in Systems and Control. Birkhauser,
Boston, MA, USA, 2003.

[11] N. A. Lynch.Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, California, 1997.

[12] M. Mesbahi and M. Egerstedt.Graph Theoretic Methods in
Multiagent Networks. Princeton University Press, Princeton,
New Jersey, 2010.

[13] E. Montijano, S. Martínez, and S. Sagués. De-RANSAC:
robust distributed consensus in sensor networks.IEEE
Transactions on Systems, Man, and Cybernetics: part B.
Submitted, May 2010.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and
cooperation in networked multi-agent systems.Proceedings
of the IEEE, 95(1):215–233, 2007.

[15] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. Shamma.
Belief consensus and distributed hypothesis testing in sensor
networks. InNetworked Embedded Sensing and Control,
volume 331 ofLecture Notes in Control and Information
Sciences, pages 169–182. Springer Berlin / Heidelberg, 2006.

[16] F. Pasqualetti, A. Bicchi, and F. Bullo. Distributed intrusion
detection for secure consensus computations. InIEEE Conf.
on Decision and Control, pages 5594 –5599, Dec. 2007.

[17] F. Pasqualetti, A. Bicchi, and F. Bullo. On the security of
linear consensus networks. InIEEE Conf. on Decision and
Control, pages 4894 – 4901, Dec. 2009.

[18] F. Pasqualetti, A. Bicchi, and F. Bullo. Consensus
computation in unreliable networks: A system theoretic
approach.IEEE Trans. on Aut. Control, 57(1):90–104, Jan.
2012.

[19] F. Pasqualetti, R. Carli, A. Bicchi, and F. Bullo. Identifying
cyber attacks under local model information. InIEEE Conf.
on Decision and Control, pages 5961–5966, Dec. 2010.

[20] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults.J. ACM, 27(2):228–234, 1980.

[21] N. Rouche, P. Habets, and M. Laloy.Stability Theory by
Liapunov’s Direct Method, volume 22 ofApplied
Mathematical Sciences. Springer-Verlag, New York, 1977.

[22] S. Sundaram and C. Hadjicostis. Distributed function
calculation via linear iterations in the presence of malicious
agents; part I: Attacking the network. InAmerican Control
Conf., pages 1350 –1355, June 2008.

[23] S. Sundaram and C. Hadjicostis. Distributed function
calculation via linear iterations in the presence of malicious
agents; part II: Overcoming malicious behavior. InAmerican
Control Conf., pages 1356 –1361, June 2008.

[24] S. Sundaram and C. Hadjicostis. Distributed function
calculation via linear iterative strategies in the presence of
malicious agents.IEEE Trans. on Aut. Control, 56(7):1495
–1508, July 2011.

[25] A. Teixeira, H. Sandberg, and K.H. Johansson. Networked
control systems under cyber attacks with applications to
power networks. InAmerican Control Conf., pages
3690–3696, July 2010.

[26] J. N. Tsitsiklis.Problems in Decentralized Decision Making
and Computation. PhD thesis, Dept of EECS, MIT, 1984.


