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ABSTRACT 1. INTRODUCTION

Recently, many applications have arisen in distributed control that Due to recent improvements in computation and communica-
require consensus protocols. Concurrently, we have seen a prodion, control system design has made a shift in many applications
liferation of malicious attacks on large-scale distributed systems. from centralized to decentralized and distributed approaches. This
Hence, there is a need for (i) consensus problems that take intotrend has been fueled by the need for increased flexibility, reliabil-
consideration the presence of adversaries and specify correct beity, and performance in applications such as coordination of vehi-
havior through appropriate conditions on agreement and safety, andcle formations [3], flocking [6], and belief propagation in Bayesian
(ii) algorithms for distributed control applications that solve such networks [15]. For these applications and many others, reaching
consensus problems resiliently despite breaches in security. Thissome form of consensus is fundamental to coordination [11, 14].
paper addresses these issues by (i) defining the adversarial asymg=owever, large-scale distributed systems have many entry points
totic agreement problem, which requires that the uncompromised for malicious attacks and intrusions. If a security breach occurs,
agents asymptotically align their states while satisfying an invari- traditional consensus algorithms will fail to produce desirable re-
ant condition in the presence of adversaries, and (ii) by designing sults, and therefore lack robustness [5]. Hence, there is a need for
a low complexity consensus protocol, the Adversarial Robust Con- resilient consensus algorithms that guarantee correct behavior even
sensus Protocol (ARC-P), which combines ideas from distributed after sustaining security breaches.

computing and cooperative control. Two types of omniscient ad-  Of course, there is a long history in distributed computing of
versaries are considered: (i) Byzantine agents can convey differen Studying consensus problems in the presence of faults and adver-
state trajectories to different neighbors in the network, and (i) ma- sarial processors [11,20]. The most potentially harmful form of
licious agents must convey the same information to each neighbor.adversary is the Byzantine processor, which may behave arbitrarily
For each type of adversary, sufficient conditions are provided that Within the limitations set by the model of computation [7]. There-
ensure ARC-P guarantees the agreement and safety conditions irfore, worst case executions must be considered. Typically, the num-
static and switching network topologies, whenever the number of ber of processors that may be Byzantine are bounded and funda-
adversaries in the network is bounded by a constant. The consermental tight bounds have been established on the ratio of Byzan-
vativeness of the conditions is examined, and the conditions aretine to normal processors [1, 7], as well as on the connectivity of

compared to results in the literature. the graph representing the communication network [1].
From a control theoretic viewpoint, consensus in the presence of
Categories and Subject Descriptors adversaries has only been considered recently, and has focused on

T o detection and identification of misbehaving nodes in linear consen-
C.2.4 [Computer-Communication Ngtworks]. Distributed Sys-  sys networks [16-19, 24, 25]. While detection is clearly an impor-
tems; H.1.1 Models and Principleq: Systems and Information  tant problem, these techniques require each node to have informa-

Theory—General Systems Theory tion of the network topology beyond its local neighborhood. This
requirement ohonlocal informatiorrenders these techniques inap-
General Terms plicable to general time-varying networks. Further, the detection al-

gorithms are computationally expensive and do not consider safety
constraints on the states of the agents. Using these approaches, itis
Keywords ppssible that the adyersaries may driye the states Qf the agents qut-
side of a predetermined safe set during the detection phase, which
Consensus, Multi-agent network, Resilience, Adversary, Byzantine may not be suitable for certain safety critical applications.

In our work, we study a consensus protocol, or algorithm, that
is low complexity and usesnly local informationto achieve re-
silience against a bounded number of adversaries in the network.
In order to codify a notion of correct behavior of the uncompro-
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remain inside the minimal hypercube formed by the initial states which is defined by replacing directed edgesIdby undirected
of the cooperative agents. This safety constraint is applicable to ones, resulting in the edge s&f.

cases where the unsafe regions are unknown, but the minimal hy- For local information flow, we consider the setinfneighbors
percube containing the initial states is known to be safe. Together, of nodej, defined byN;" ={i € V|(¢,j) € £}, and the set of
these cgndi}ions form th@dvgrsarial asymptotic agreement prob- inclusive in-neighborsf nodej, defined byj]i" = ,/\/]‘,“ U{j}. The

lem which is a continuous-time consensus problem analogous t0 j_degreeof j is denoted?” 2 ||, and theminimum in-degree

the Byzantine approximate agreement problem [2, 11]. of D is denotedi" (D). Likewise, themaximum in-degreef D

¥ Far thiis ptroé)IeLn,t\;]ve ;n?_del tr;egetwor_ked syste_tmr:_n Contintl\,,lvoui- is denotedA™ (D). There are, of course, analogous definitions for
ime and study both static and dynamic (or switching) networ out-neighbors e.g., theout-degreeof j is d" £ || and the
topologies with directed information flow. The agents have con- . - ot J J

minimum out-degreef D is §°(D).

gnnueot\lljviquytr;wzrpéﬁi tiﬂg:gggﬁg;:aﬁi:]r;tfg;n;?:ggrtgf Z?s(i:r;e(i:ahteor %\I/g_r In order to describe information flow across the network, we con-
ies. In this paper. we define two tvpes of omniscient adversgrieS' sider the following definitions. Aathis a sequence of distinct ver-
gles. paper, yP “ticesio, i1, .. . ,ix such that(i;,ij41) € € j = 0,1,...,k — 1.

mah_uoug and Byzantine. I_VIaI|C|ous agents share the same infor- We use the notion of path to define different forms of connected-
mation with each neighbor in the network and are analogous to the : X s
ness. We say thdb is strongly connectedf for everyi,j € V,

discrete-time malicious agents studied in [16-19, 24]. Byzantine there exists a path starting aand ending ag. If the underlying

agents are capable of conveying different information to different . : . .
neighbors in the network, and are therefore more deceitful than ma_graph Is connected, thefl is weakly connectedAlternatively, if
9 ' the underlying graph is disconnected, tHeiis disconnected

licious agents. . . To measure the robustness and redundancy of information flow,
The proposed consensus protocol is the Adversarial Robust Con- . )
we define avertex cutas a set of verticek such that the removal

sensus Protocol (A.RC'P)‘ which borrow_s ideas from .°°"?p“‘ef SC of K results in either a disconnected digraph or the trivial digraph

ence and cooperative control. It combines the elimination of ex- . f a sinal d e .= is the si f

tremal values used in Byzantine resilient consensus algorithms in consisting of a single node. T. nr)ectlwty/{(D) IS the size of a
minimal vertex cut. A digraph is said to lieconnectedf x(D) >

d!smbl.]ted compu_tlng [2, 11], with th? standard_ consensus te_ch- k. A simple consequence of defining connectivity in this manner is
nigue in cooperative control of summing the neighboring relative #(D) = r(G(D)) [4].1

states as input to an integrator agent [14].
We introduced ARC-P in [8], where we studied resilience to ma- 22 System Model
licious agents in complete networks. Here we extend the study of ~— "~ ] . ) .
ARC-P to more general network topologies. We present sufficient 1 NiS Section details the system model, with the assumptions on
conditions on the set of possible network topologies that allow us the cooperative agents and adversaries. To allow for time-varying,
to prove agreement for both fixed and switching topologies using ©" switching, ne_twork topologies, we conS|derth_e finite set of all di-
a common Lyapunov function. For safety, we use an invariant set 9raPhs om verticesI', = {D:, ..., Da}. EachdigrapiD, € I's
argument similar to the argument made in [8]. We also provide a hasthe same vertex séfwhereas the directed edge s€is. .., £a
necessary condition on consensus using ARC-P. Then, we relate thé® all distinct. Wlthout loss of generality, is partitioned into a
sufficient conditions to known necessary and sufficient conditions Set ofp cooperative agent¥.. = {1,...,p} and a set of; adver-
set forth in the literature-which have addressed different consensus>@1€8Ve = {p +1,...,n}, with ¢ = n — p. A switching signal
problems under different models of computation. Although the suf- 7 R>o0 = {1,...,d} determines which digrapP, ;) € I, de-
ficient conditions are conservative, we provide pathological exam- SCriPes the network at timec R>o. We assume a finite number
ples in which the conditions are relaxed minimally and consensus Of Switches on any finite time interval.

is precluded. Finally, we illustrate the theoretical results through a _ F-0r Simplicity of notation, we assume each agent's state is scalar.
simulation example. Collectively, z.(t) = [z1(¢),...,zp(t)]' € RP is the state of the

The rest of the paper is organized as follows. Section 2 covers cooperative agents. Likewise, the collective state of the adversaries

some preliminaries including the terminology, system model, and CONveyed to agent € Ve is za, (t) = [wp11,(1), - -, 20 5 (1)]T €
problem statement. ARC-P is then described in Section 3. Sec-R?. If k& ¢ J;"(¢), then adversary: does not directly influence
tion 4 studies the convergence properties of ARC-P in a class of agent;j at timet, in which case agent does not receivey ; (t).
directed networks. Section 5 examines more closely the sufficient While this notation may seem overly cumbersome, it simplifies
conditions given in Section 4, and illustrates the results through dealing with Byzantine agents. One may take the viewpoint that
simulation. Section 6 gives an account of related works, and Sec-«,;(t) is the trajectory Byzantine agehtwould like to convey to

tion 7 provides conclusions and directions for future work. agentj, but the topological constraints on the network prevent it
from doing so. With this justification, we denote R x V. — R"

by z(t,j) = [z (), zq,(t)]" € R". Whenever the context is un-
2. PRELIMINARIES derstood, we will drop the arguments and writg z.,, andz.
Finally, we denote by, the set of alle,;, j € Ve.

2.1 Review of Graph Theory

In this section we review some fundamentals of graph theory
pertinent to this paper. As is common when dealing with multi-
agent networks, we model the networked multi-agent system with
a (finite, simple, labelledjligraph D = (V, &) [12]. Thenode set
VY = {1,...,n} abstracts thes dynamic agents asodes and the
directed edge se&f C V x V models the information flow between
the agents, which is realized either through communication or sens- 1y, [4], this form of connectivity is defined as; (D) and other

ing. For each ordered pd(t, j) € &, state information flows from  forms of connectivity in digraphs are studied (most notably strong
nodes to nodej. We also consider thanderlying graphG (D), connectivity). For our purposes, the definition given here suffices.

2.2.1 Cooperative Agents

Each cooperative agente V. has dynamics given by; = u;,
whereu; = f; o) (e, zq;) iS @ control input. The states of the
neighboring adversaries, withir,, are analyzed as uncertain in-
puts; however, because there is no prior knowledge about which
agents are adversaries, the control input must treat the state infor-




mation from neighboring agents in the same manner. The dynamics3. CONSENSUS PROTOCOL

of the system of cooperative agents are then definet Yo by Here, we describe the Adversarial Robust Consensus Protocol
ie = Fouity(@esa), xe(0) ERP,Dyipy € T, 1 (ARC-P) with respect to parametét € Z>o. The main idea of
e = Jeatt(@e, 2a) «(0) ® " @) the protocol is for each cooperative agéwrt V. to sort the relative
wheref. o) (Te, Ta) = [f1,000) (Tes Tay )s - -+ s Foro(e) (Tes Tay)] T states of its inclusive in-neighbors and then removeRhargest

The dynamics of (1) define a switched system without impulse ef- andF smallest ones. This resultsin; () = d;'(t) + 1 — 2F rela-
fects, so the trajectory of any solution is absolutely continuous [10]. tive states ifd;' (t) > 2F, which are summed to determine the first
. order dynamics of the agent. To make the protocol well-defined for
2.2.2 Adversaries all network topologies, i.e., whenevéf (t) < 2F, in this case the
The g adversaries are assumed to be designed for the purposeagent removes all neighboring values from consideration and the
of disrupting the objective of the cooperative agents. It is assumed input is zero. This approach adheres to the philosophy that when-
that the number of adversaries in the network is bounded above byever there is insufficient information to act in a way that is resilient
a constantF’ € Z>o, so thatg < F. We consider two different to adversarial influence, it is best to do nothing.
adversary models, defined as follows. In order to formally express ARC-P with parameférlet &; (t)
denote the vector of sorted values of the states in the inclusive in-

DEFINITION 1. The g adversaries have continuous state tra-  pejghborhood of nodéat timet € Rx,. The elements of; are
jectories; i.e.x, . is continuous forj € V.. An adversary is in -
J as y y denoted by}, ..., &5 W *" and satisfy

(i) Byzantineif it can convey different state trajectories to differ- L ) AN (t)+1
ent neighbors; i.e., we may have, # xa,, Of Tx,; # Tk, & <& <L . (4)
whenevek € V, N J;"(t) N J;"(¢) fori, 5 € Ve; Then, cooperative agente V. calculatesu; = f; () (2c, za,) at

(i) Maliciousif it must convey the same state trajectory to each timet € R0 by

neighbor; i.e.xa, = x4, forall4,j € V.. df ()+1-F i .
OO L€ e, = e, TOrEE T <7 frot(zewe) = | S (G0 —wl®) 4O 228
Both classes of adversaries are assumed to be omniscient and 0 di'(t) < 2F.

behave in a worst case manner. Hence, the adversaries are able to (5)
carefully select their continuous state trajectories to cause maximalIf each cooperative agent uses ARC-P, then existence and unique-
disruption to the consensus objective of the cooperative agents.  ness of solutions to (1) is guaranteéd > 0 sinceo(t) is piece-
wise constanty,; is continuous and effectively restricted to a com-
2.3 Problem Statement pact set with respect to (5) (see the discussion after Lemma 2), and
Theadversarial asymptotic agreement problandefined by two fi,o(t)(Te, Ta, ) is globally Lipschitz inz. andz,, Vi € V. [8].

conditions, agreement and safety, along with the type of adversary ~Figure 1 illustrates the computation that occurs at tinfer co-
considered. Thagreement conditionequires that the state of the ~ operative agent wheneverd;'(t) > 2F. In the figure, the state,

cooperative agents;., converges to the agreement spage,= x;(t), of the agent, whose dynamics aig(t) = wu;(t), is sub-
spar{1,} C RP, despite the influence of the adversaries. Thatis, tracted from each of the other states in its inclusive neighborhood,
giveng < F adversaries and.(0) € R?, then with each of the in-neighbors denotefl j = 1,2,...,d; (¢). The
resulting relative state values are sorted and then reduced by elim-
ze(t) =+ A ast — oo. @) inating the largest and smalleStelements. Finally, the remaining

Thesafety conditiomequires that the state trajectory of each coop- €leéments are summed to produce the control inp(t) to the inte-
erative agent is contained in the interval formed by the initial states 9rator agent. The only differencedf'(t) < 2F is that the output
of cooperative agents and that the limit exists, despite the influence©f the Reduce block is.

of the adversaries. That is, if we define the interval

x,(¢) f x,(6)=u,(¢)
To = [min z;(0), (0)],
o = [min 2;(0), maxz;(0)]
o . . . Y.
then the safety condition requires that givert F' adversaries, i 1 .
z;(t) € Zp,Vt € R>o and tlim z;(t) € Ip existsVj € V.. (3) | § X & X
— 00 xj N X
Equivalently, the safety condition can be stated in terms of .,—> Sort : Reduce : +
Let Ho = Z7 C R” denote the hypercube formed by the Carte- E??““Hl_x_ E_d,“‘(t)H—F_x
sian product of copies ofZ,. Then the safety condition requires xf‘ ® d d d d
zc(t) € Ho forallt > 0 andlim;—,o z(t) € Ho, despite the in- _’D—v

fluence of the adversaries. It is important to explicitly require that
the limit exists because convergence to a single point is desired.
The safety condition in (3) is similar to the validity condition
defined in [8], which in turn was motivated by the validity condi-
tion of the Byzantine approximate agreement problem [2,11]. The  From a complexity standpoint, ARC-P consists of low complex-
definition ensures that the value chosen by each normal node liesity operations in both time and space, including sort, reduce, and
within the range of good values. This is important in applications sum methods (see Figure 1). The worst performing subroutine of
where the values are measurements and only measurements withiRC-P is the sort method. But, if quicksort is used, it is worst-case
the range obtained by the normal nodes are considered valid. Thequadratic in time and linear in space, with respect to the size of the
safety condition entails this notion along with an invariant condi- inclusive in-neighborhood. Therefore, ARC-P is also worst-case
tion, which is important for safety critical applications. quadratic in time and linear in space, and hence low complexity.

Figure 1: Synchronous data flow model of ARC-P for agent.



4. ANALYSIS

This section details the analysis of ARC-P with paraméter

We begin by introducing a function that characterizes the maxi-

While Lemma 1 restricts the behavior #f almost everywhere,
the next result restricts the feasible trajectoriesdft). It shows
that the minimal hypercub®, formed by the initial values of the

mum disagreement amongst the cooperative agents’ states. Defin€00perative agents isbustly positively invariant

¥: R? — R by
(6)

U(we) = max{zy} — min {zy}.
The function® has several attractive propertigg) it is nonneg-
ative with U'(z.) = O forall z. € A and¥(z.) > 0 Vz. ¢
A, (i) it is Lipschitz, (zi7) it is increasing away fronM in the
sense thal (y1) > U(y2) Vy1,y2 € R? satisfying disfy:,.4) >
dist(y2, .A), and(iv) it is radially unbounded away from in the
sense tha¥ (y) — oo as disfy, .A) — co. These properties make

DEFINITION 2. The setS C R? isrobustly positively invariant
for the system given by (1) if for a#l.(0) € S, ., (t) € R?
i € V., andt > 0, the solution satisfies.(t) € S.

LEMMA 2. Suppose the cooperative agent3/inexecute ARC-
P with parameterf’ € Zx>o and at mostF' < n malicious or

Byzantine agents. Then, for evépy, € I',, the hypercube
Ho = {y € RP|zo,min < ¥i < Tomax ¢ = 1,2,...,p},

wherezo min = min;ey, {x;(0)} and zo,max = max;ey, {z:(0)},

U an excellent Lyapunov candidate for proving global convergence s robustly positively invariant for the system (1).

to A. ¥ has been used to prove convergence of asynchronous con-

sensus algorithms whenever all nodes are cooperative [26].
But, one issue withl is that it is not everywhere differentiable.

Therefore, to study the monotonicity ¢ft) = ¥ (z.(¢)), we con-

sider theupper-right Dini derivativeD ") (t) of « att, defined by

D a)(t) = lim sup M

bl
h—0t h

and theupper-directional derivativef ¥ with respect to (1):

v ¢ h i cyLa - U c
D+‘I/(33c,xa) = lim sup (Te + hfeot) (e, Ta)) (zc)
h—0+ h

The motivation for considering the upper directional derivative of
VU is that DT p(t) = DT (z.(t), 2. (t)) for almost allt along
solutions of (1) sinceé is locally Lipschitz [21]. In this case,
DY¥(x,, ) = limsup Nu(h) + lim sup M,
h—0+ h h—0Tt h

@)

with N1 (h) = max{zi + hfio() (e, 2a,)} — max{w:},

Na(h) = fg{}l{xz} - ZIIEl%}Il{SCz + hfi o) (Te, Ta;)}-

4.1 Preliminary Results

At this point, we derive some preliminary results that hold for all
network topologies. We begin with a fundamental result for ARC-
P that bounds:. to a time-dependent compact convex set, which
includes the origin.

LeEmMA 1. Consider the cooperative ageite V. executing
ARC-P with parameteF’ € Z>q and at most’ < n malicious or
Byzantine agents. Then, foic R>o andD, () € I'y

mi(t) (i min — i) < fi,o) (Te, Tay) < mi(t)(Timax — T4),

wherez; min(t) = min{z;]j € J"(t) N Ve} and = max(t) =
max{z;|j € Ji"(t) N V.} are defined fot € R>,, and

) dMt) +1—2F if dM(t) > 2F;
m;(t) = .
1 otherwise.

PROOF. If df'(t) < 2F, fi o(t)(2c,q;) = 0 and the result

follows. Therefore, assumé(t) > 2F. Since there are at most
di'(t)+1-F

F adversaries, we Know; imin < £ and¢
Hence, (4) implies
dN(t)+1-F

>

I=F+1

< Zj imax-

m; (Zimin — ) < (&b — ) < mi (Timax — 3) -

O

PROOF SinceH, is compact and any solution of (1) using (5) is
continuous withe.(0) € Ho, we must show thaf. ;) (zc, Ta) iS
not directed outside dfo, whenever:.(t) € 9Ho, forall D, €
Iy, andz,, (t) € R? for i € V.. The boundaryH, is given by

OHo = {y € Ho|Fi € {1,2,...,p} s.t.yi € {Z0.min, To,max} }-

Fix z.(t) € OHo. Lete; denote thej-th canonical basis vector
and denot&.. min, Zz.,max C {1,2,...,p} as the sets defined by

J € Zoomin € 5 = To,min ANAL € Ty, max & Tk = T0o,max-
Then, from the geometry of the hypercube, we require
E]T'fc,a(t)(ﬂfcaxa) >0 Vj €Ly min,
e;;fc,a(t)(asc, Za) <0 Vk € Iy, max

These conditions are true for &,y € I';, andxzq, (t) € R?
with i € V. by Lemma 1, in which the lower bound is used for
Jj € Zy.,min SINCEZ; = Zjmin = Zo,min, @nd the upper bound is
used fork € Z, max SINCETK = Tk Imax = T0,max- OJ

The argument made in Lemma 1 implies that any time an ad-
versary is outside df; = [min;ey, {z:(¢)}, max;ev, {z:(t)}], its
influence is guaranteed to be removed by its cooperative neighbors,
and therefore has the same effect as if it were on the boundary of
Z:. Using Lemma 2 we conclud& C Z,, Vt > 0. Hence, each
adversary is effectively restricted to the compact&gtwith re-
spect to (1). This fact enables us to allow adversary stat& in
rather than explicitly restricting them to a compact set, while still
ensuring existence and uniqueness of solutions. Next, we derive an
explicit equation forD* U (., z,), valid at a fixed time > 0.

LEMMA 3. Fixt > 0 andz.(t) € RP. Suppose each coopera-
tive agent inV. executes ARC-P with parametére Z>, and at
mostF < n Byzantine or malicious agents. LB, € I', and
defineSmin(t), Smax(t): R — {1,...,p} by

J € Smalt) < 2,(t) = min{: (1))
k € Smax(t) & zk(t) = ?é%f{x’(t)}

Fix j¢: € Smin(t) such that
Jivo)(TesTay,) < fiow) (@es Taz), V5 € Smin(t)-
Likewise, fixk; € Smax(t) such that
Froo)(@es Tay,) > fro) (Te, Tay,), Yk € Smax(t)-
Then, at timeg, we have
DT U(ze(t), 2a(t) = frr o) (e, Tay, )= Firo(0) (Tes Ty, ), (8)

andD ¥ (x.,z,) < 0forall t > 0.



PROOF Let m¢max = max;ev.{mi(t)}, wherem;(¢) is de-
fined in Lemma 1. Lemma 1 implies that
_mt,max‘ll(l‘c) < fi,a(t)(mca xai) < mt,max\l/(l'c)
holdsVi € V.. If z.(t) ¢ A, then there existsmin > 0 such
thatz; — x; > emin > 0 for all j € Smin(t) andi € V. \ Smin(t).
Similarly, there existgmax > 0 such thatc, —x; > emaxforall k €
Smax(t) andi € Ve \ Smax(t). Then, by letting: = min{emin, €max}
and takingh < €/(2m¢,max? (zc(t))), we may write
zi + hfi o) (Te, Ta;) 2> i — hime max¥ (zc(1))
Z XTi; — 6/2
> x;+ 6/2
> x;+ hmt,maxq}(mc(t))
2 i+ hfjow (e, Tay)
2 s + h.f]},,o‘(t) (xm xuh )
foralli € Ve \ Smin(t), j € Smin(t). Therefore, at time
ng}n{xq + hfiow (T, Ta;)} = T5, + B}, 00t)(Tes Tay, )-
Following a similar argument, we deduce
Iiré%)‘({xi + hfio) (T, Ta;)} = Thy + Mfky o(t)(Te, Tay, )-

Combining this with (7), gives (8). On the other handzif(t) €
A then both¥(x.) and D" ¥(z.,z,) are zero. Finally, apply-
ing Lemma 1 withzj, imn = zj, andzy, imax = =, shows that
DTV (xe,z4) <0. O

Notice in (8) that the agents acting/asand;; may change with
time. It will be important to show in the convergence argument
that bounds onD™ ¥(x., x,) hold for all t € Rsq, regardless
of which cooperative agents fill the roles kf and j:. Next, we
show that¥ (z.) is bounded by scaled versions of dist, A) =
infye . ||zc — yl||2. For this argument, we use the following prop-
erties of the min and max functions.df€ R, then

gt tod = it o

9)
{2%}5{% +a}= ?%%)C({xz} + a.
LEMMA 4. Givenz. € R?, ¥(z.) is bounded by
1 . .
—dist(z., A) < ¥(z.) < 2dist(z., A), 10
7 H(ze, A) < U(zc) (e, A) (10)

PrRoOF Consider the decomposition of: z. = va + v 41,
inwhichva € Aandv . € A*. Given this decomposition, we
concludel|v 41 || = dist(z., A) and3y € R such that 4 = v1,.
Because of this, we can use (9) to write

U(we) = max{(vas)i} — min{(vas)i}, a1
in which (v 41 ): is thei-th element ofv 4. . From this, we obtain
the upper bound

(ze) < gggf{(v#)z‘} + \{givri{(vAL)i}l < 2[jv gl

On the other hand, sineg,:. € A, 37 (v41): = 0, so that
maxigyc{(vAL)i} >0 andminievc{(vAL)i} < 0. From this
and (11) we conclud@ (z.) > |(v4.);| forall j € V.. Thus, we

obtain the lower bound
1 1
— < —/p¥2(z.) = U(x.).
7 <7 pV2(z.) (zc)

lvasll2

In the sequel, we first consider fixed network topology, and prove
exponential convergence af.(¢) to A for a subset of network
topologies by using properties @ (z.) and DYV (z., z,). We
then combine the agreement result with an invariant set argument
to prove safety. Afterwards, we prove a necessary condition, and
then generalize the results to the case of switching topology by us-
ing ¥ as a common Lyapunov function.

4.2 Fixed Topology

In this section, we assume thaft) = s and D, belongs to
I'nmrp C I'y or I'pr C Ty whenever the adversaries are, re-
spectively, malicious or Byzantine. When dealing with malicious
agents, we consider the following class of digraphs with restricted
in-degrees or out-degrees, defined by

T, r = {Dy € T',,] atleast one oM 1r andM2F holds},
(12)
where

M1p: §"(Dy) > |n/2] + F;
M2p: 38 CV(Dy),|S| > 2F+1,such thatl}"'=n—1,Yi € S.

When dealing with Byzantine agents, we require stronger assump-
tions on the in-degrees and out-degrees. In this case, we define

I'p,r = {Dy € I'y| atleast one 0B1r and B2 holds}, (13)
where
n/2+ |3F/2] if n is even and is odd;
|n/2] + [3F/2] otherwise.
B2p: 38 C V(Dy), |S| > 3F+1, such thadi"'=n—1,Yi € S.

It follows from these definitions thdfz,» C I'ar,r. Addition-
ally, the conditions in (12) and (13) implicitly bound the maximum
number of adversarieis by a function of the total number of agents
n. Specifically, property\/ 1 implies

n—1>8"Ds) > |n/2] +F = F < [n/2] —1.
Similarly, propertyM 2 implies
n>|S|>2F+1 = 2F <n-—1.

BlF: (5in(Dk) Z {

In either casen > 2F. Analogously, the propertieB1r and
B2fr imply n > 3F. Therefore, it follows that’ < [n/2] — 1
(or F < [n/3] — 1) wheneverD, € T’y r (0r Ds € I'p.r). A
consequence of this is thalf (D) > 2F for all D, € Ty, r (0r
Ds € T'g,r). Hence, in this case, (8) may be rewritten using (5) as

di,';,'t (t)+1—F df ()+1-F

D W(ee,za) = > (€ —an)— Y. (&~ ). 14

m=F+1 I=F+1

This equation is the basis of the agreement argument below.

4.2.1 Agreement

Here we combine Lemmas 3 and 4 with the assumpiigne
T'm,r or Ds € T'p,r for malicious or Byzantine adversaries, re-
spectively, in order to show global exponential convergence.of
to A.

THEOREM 1. Suppose each cooperative agenfn executes
ARC-P with parametef’ € Z>, and at most(¢) F' malicious
agents withD, € I'ar 7, Or (i2) F Byzantine agents witl, €
T's,r. Thenz. globally exponentially converges to the agreement
spaceA, and therefore the agreement condition (2) is satisfied.
Moreover, the convergence to the agreement space is bounded by

dist(z(t), A) < 24/p dist(z.(0), A)e . (15)



PrROOF (i) Fix t > 0 and consider (14). Since there are at PrRoOF Lemma 1 implies that for eache V.
most F' adversaries, each term in the first sum is nonpositive and
each term in the second sum is nonnegative. If at least one of the — (= 2E)¥(we) < fio)(Te, ¥a,) < (n — 2F) ¥ (). (17)
sorted values in the second sum is greater than or equal to any ofit was shown in the proof of Theorem 1 that under eitfigor (i7),

the values in the first, say;’;' < gﬁt then lim; o0 ¥(z(t)) = 0. Hence, (17) implies
DYU(ze, xq) < —U(z.), (16) Hm fio ) (ze, 2a) =0,
since, in this case, and thuslim;_, . z;(t) exists. SinceHo is compact, Lemma 2
dn (t)+1-F dn (&) +1-F implies the result. U
DT W(we,wa) = ZF:H(&? ~ Tk) = l;l(@z ~ ) 4.3 Necessary Condition
m#Am! 141 Next, we consider the following necessary condition for ARC-P

to achieve agreement in networks with fixed topology.

+ (& - ) - W) < —v(ao). | |
THEOREM 3. Consider a networked multi-agent system that ex-
A sufficient condition for this to hold, given thatl agents convey ecutes ARC-P with parametét € Z>, and at mostF" < n ma-
the same values to all neighbors, is to ensure there is a commonlicious or Byzantine agents. If the agreement condition is satisfied,
value in the two sums, e.g;! = &4,. This is guaranteed |7, N thend™ (D) > 2F.
& | > 2F, whichis obviously true if property/2 holds. If only PROOF The caseF — 0 is vacuously true, so assunfe >
property M1 holds, it must also be the case, since otherwise, we | gypnosedi € V. with d" < 2F and 3¢ > 0 such that

reach the contradiction 2;(0) — 2:(0) > eVj € Ve \ {i}. fd™ > F — 1, let F — 1
n> UJ": U j}cf” = |j]i;‘| + U}JH — IJJ'T n jgl‘ of i's in-neighb_ors be adversaries wit_h values smaller than).

n Then,z; = 0 since both the cooperative and adversary values are
22l +F+1)—2F 2n+1. removed. On the other hand, using Lemma 2 while treatimsan

Therefore, (16) holds for all > 0, and hence it can be shown that adversary, ensures;(t) — i(t) > € ¥j € Ve \ {i} andt > 0. [
U (z.(t)) < U(z(0))e . Recall that the sufficient conditions imply the necessary condi-

] i tion, §"(Ds) > 2F. However, the converse is clearly not true. The
Finally, using (10), we conclude (15). Thus, we have shown global qyestion then arises, are the sufficient conditions also necessary?
exponential convergence of to A. The answer is no, but we delay further discussion of the conserva-

(ii) The argument is identical @), except here to ensure there  tiveness of the sufficient conditions until Section 5. Next, we study
existsm’ andl’ such thaty; = 551 and thereby guarantee (16), the sufficient conditions under switching network topologies.
we need 7" N J;"| > 3F. This is required if there ar€ Byzan- o
tine aggntétin thet!ntersection because of the following argument. 4.4 SW|tCh|ng TopOIOQy
Supposé- of the cooperative agents’ states are strictly greaterthan ~ Switching network topologies can arise from a number of fac-
F other cooperative agents in the intersection. Then ther8&re  tors: temporary removal of edges due to lossy communication chan-
agents in the intersection, and the adversaries may @ é&atiffer- nels, the addition or loss of edges caused by mobile agents, and so
ent values all strictly between these two sets of cooperative agenton. The results of the previous sections may be extended to switch-
states. Thus, at least one more cooperative agent in the intersectionng topologies in a straightforward manner by assuniihg,, €

is necessary to ensure a common value. Analogous(y)fgrop- Iarr or Doy € I'p,r fort > 0 whenever the adversaries are
erty B2 guarantee$J;] N Jy.| > 3F by construction, and so  malicious or Byzantine, respectively. It is shown in Theorem 1 that
does propertyB1 . Otherwise, we reach the contradiction ¥ is a Lyapunov function for each possible digraph € T'ar,r
. - or D, € I'p,r. Further, the upper bound on convergencerof
S )25+ 1)+ ) =3F >n+1  neven&F odd; to A (15) holds globally and for each digragh, € ' or
l2(lE]) + [%} +1)—-3F >n+1 otherwise. 0 D, € I'p,r. Therefore,¥ is a common Lyapunov function, thus

proving global exponential convergencewfto .4 for the switched

Notice in the proof of Theorem 1 that it is not necessary that there system (1). On the other hand, Lemma 2 and (17) hold for all net-
exists a common in-neighbor in the reduced set of in-neighbors of work topologies. Therefore, the same argument used in the proof
j+ andk, to show (16), and therefore (15). All that is required is of Theorem 2 may be used for the case of switching topologies.
that there exisg}" and¢!, such that”’ < ¢! . However, because ~ Hence, we have the following result.
this must hold globally (i.e., for alt.(0) € R” andz,,(t) € R? ) !
fori € V.) and for allt > 0, itis untenable to depend on the values COROLLARY 1. Suppose each cooperative agenvirexecutes
in those neighborhoods without insisting that there is a cooperative ARC-P with parametef” € Z-, and at most(i) ' malicious

agent as a common in-neighbor. agents withD, ;) € ', r forall t € R, or (zi) F' Byzantine
agents withD, ;) € I'p,r for all t € Rx>o. Then the agreement
4.2.2 Safety condition (2) is satisfied with the convergence to the agreement
In this section, we verify that the safety condition (3) holds by SPace bounded by (15), and the safety condition (3) is satisfied.
using an invariant set argument. Therefore, under these conditions, ARGdPves the adversarial

asymptotic agreement problem in the presenag)ahalicious and
THEOREM 2. Suppose each cooperative agenfn executes (#¢) Byzantine agents.
ARC-P with parametef’ € Z>, and at most(:) F' malicious
agents withD, € Ty, or (i¢) F Byzantine agents wit, € So far we have studied explicit switching in the network topology
', r. Then the safety condition (3) is satisfied. when the range of the switching signal is appropriately restricted



(i.e., D,y € T'mar 0r Doy € I'p,r forallt € Rxp). But, even

in fixed network topology, the algorithm ARC-P may be viewed as
the linear consensus protocol of [14] with state-dependent switch-
ing. In ARC-P, the sort and reduce functions effectively remove the
influence of a subset of neighbors based on the state values of those
neighbors. The remaining relative states are summed as input to the
integrator in the same manner as all of the neighbors are in the lin-
ear consensus protocol of [14], which justifies the analogy. Hence,
the results of Section 4.2 provide new insight into the convergence
of the protocol of [14] with state-dependent switching.

5. EXAMINATION OF CONDITIONS

In this section, we examine the conditiohtl » and M 2 that
definel’ s, andB1p and B2 that defind s, 7. Important ques-
tions arise with regard to these propertiés; How do these con-

ditions relate to known conditions on the maximum number of yagitional metrics such as in-degree, out-degree, or connectivity.
Byzantine processors in the network [1, T}}) How do they re-  \yg qg this by demonstrating that minimally relaxing these con-
late to conditions on the connectivity of the network when reaching itions leads to pathological examples with high connectivity in
agreement with Byzantine processors [1], or detecting and isolating \ynich ARC-P does not achieve agreement.

malicious agents [18,24{ji:) How conservative are the conditions Example 1 [RelaxM 1 with 5in (D) = [n/2] + F — 1]. Con-

with respect to achieving the adversarial agreement problem usinggiqer the network topology in Figure 2, in whidk,, o is the
ARC-P; and(iv) How applicable are the conditions to networks complete digraph ofin/2] vertices, and each vertex i has ex-

of interest? The first question has been answered in Section 4'2'actly F neighbors inY and each vertex i’ has either — 1

where we showed tha1r and B2r imply n > 3F, whichisa o p neighbors inX. Now, assume there are no adversaries and
necessary condition when dealing with Byzantine behavior of finite ot 41| states inX have valued and all states i have valuel.
automata in synchronous networks [1,7]. The rest of this section is Tpep, by (5), all agents itk will remove the influence of their
devoted to addressing the remaining questions. neighbor inY and vice versa. Hence, no consensus is reached,
To addresgii), we show thafl/1 andM2r—andthereforealso  ang ng agent even changes its state. Furthermore, this graph is
Bl and B2p—imply x(D) > 2F + 1, which is a necessary and (|, /2| + F — 1)-connected, which for large may be much larger
sufficient condition for the existence of an algorithm that ¢an thanx(D) > 2F + 1.
ensure agreement of the nonfaulty nodes in the presence of at most £rqm this example, we see that reducing the minimum in-degree

£ Byzantine nodes in synchronous networks [1](®rdetectand  py st one fromd 1 is not sufficient for global convergence of
isolate up toF' malicious nodes in linear consensus networks [18, z. to A. Additionally, in this example, the connectivity is very

Figure 2: Relax M1x with 6"(D) = |n/2] + F — 1.

24]. high. This suggests that the minimum in-degree and connectiv-
THEOREM 4. If F € {0,1,...,|n/2] — 1} and the digraph ity are not appropriate metrics to use in characterizing the network
satisfieq(7) M1 or (ii) M2, thenD is 2F + 1-connected. toplogies in which ARC-P achieves agreement. The following ex-
PROOF (i) Fix F € {0,1,...,|n/2] — 1} and consider the ample demonstrates that the minimum out-degree is also inade-
underlying graphg, which must satisfy(G) > |n/2] + F. By quate and further empha3|zes the |r1adequacy of connectivity. Here,
Menger's Theoremi(G) > 2F + 1 is equivalent tog having the number of nodes i from M2 is reduced by one.

atleastF + 1 vertex-disjoint paths between any distinct vertices __ Example 2 [RelaxA/2 with |S| = 2F"and A =n-2Vi€
i,7 € V. Indeed, this is the case|if7; N J;| > 2F + 2 for all V\ S, sothaté®™ (D) = n—2]. Consider the example of Figure 3,

i,j € V. Onthe other hand, we know thiaf; N.7;| > 2F +1 (c.f. which hagS| = 2F, with S = §'U{j} andd; = n—2,i € V'\

the proof of Theorem 1). From this we conclude thatifi) ¢ &g S, 50 thav*(D) = n — 2. Sinced; = 2F — 1, this example does
then there are at lea8t” + 1 vertex-disjoint paths betweerand not satisfy the necessary condition of Theorem 3. The argument in
j. Therefore, assume there existg € V such that(i, j) € & the proof shows that the agreement condition is not satisfied. Since
and|.7; N J;| = 2F + 1. In this case, there ag¥ vertex-disjoint the underlying graph is complete, this dlgraphﬂs_l)_-connectedz _
paths accounted for with vertices ifi N 7;. But, becausé < which emphasizes the inadequacy of connectivity in characterizing
|n/2] — 1, we know ' the convergence properties of ARC-P.

\Til, 1T5] =2 [n/2] + F+12>2F +2,

which means there exists € 7; \ J; N J; andj’ € J; \ Ji N
Ji. f (i, 5") € Eg, theni, i, j', 7 is the last vertex-disjoint path
necessary to concludd” + 1-connectivity. If (i, j') ¢ Eg, then
we know thal.7;y N J;/| > 2F + 1, and there are at mo8#" — 1
vertices in(J7; N J;7) N (J: N J;) because andj cannot be in d;=n-1
Jy N J;. Hence, there exists, € Jy N J;» \ Ji N J;, so that
i,i’,m,j’, j is the last vertex-disjoint path necessary to conclude
2F + 1-connectivity.

(#i) Any vertex cut must contain at leasF'+ 1 vertices, because
otherwise a vertex remains éadjacent to all other vertices. []

d" =2F-1

Figure 3: Relax M2p with |S| = 2F and §®(D) = n — 2.

Example 3 [Relax B1r with §"(D) = n/2 + [3F/2] — 1
if n is even andF is odd, and§"™(D) = |n/2] + [3F/2] — 1

To address the conservativeness of the conditions with respectotherwise]. Consider the digraph shown in Figure 4. In the fig-
to convergence of ARC-P, we show that we can do no better using ure, the digraph is partitioned into 3 cliques (i.e., complete subdi-



graphs),D = X; U X, U X3, and each clique hds/2| — | F/2],

F, and[n/2] — [F/2] nodes, respectively. For clarity, we do
not show edges internal to the cliques. We only show one rep-
resentative node from the se¥§, and X3, but all nodes in each

of these sets havé' in-neighbors in each of the other two sets—
which is possible since. > 3F. This leads to an in-degree of
di' = |n/2] + [3F/2] — 1 for eachi € X,, and an in-degree

of & = [n/2] + [3F/2] — 1 for eachj € X5. On the other
hand, the nodes iX; exchange information bidirectionally with
all other nodes, so thatf = d®" = n — 1 forall k € X.
Therefore, the minimum in-degree depends on the parity @fid

F. If they have the same parityXi| = |X3|, andd" (D)
n/2] 4 [3F/2] — 1. If nis odd andF" is even,| X3| = | X1| + 1,
andé"™ (D) = |n/2] + [3F/2] — 1. But, if nis even and' is odd,

|X3] = |X1] — 1, andd™ (D) = n/2+ |3F/2] — 1, which means,

in any caseB1r is minimally relaxed.

To show that ARC-P may not achieve agreement in this digraph,
let each node itX; and X3 have initial value 1 and 3, respectively.
Suppose all nodes i, are Byzantine, and they transmit a constant
trajectory of 1 to nodes ik; and 3 to nodes itX3. Then nodes
in X1 remove the influence from thel¥ neighbors inX; and vice
versa, so that agreement fails.

Figure 4: Relax Bl with 6"(D) = n/2 + |3F/2] — 1if nis
even andF is odd, andé" (D) = |n/2|+ [3F /2] —1 otherwise.

Example 4 [RelaxB2r with |S| = 3F and S = 51U S2US3].
Consider the digraph in Figure 5. In this exampfe,= S; U
Sa U S, with |S;| = F for ¢ = 1,2,3. The remaining nodes in
V \ S form a clique,K,,_sr. Nodes inS; and Ss; have value 1
and 3, respectively, and nodesin\ S have value 2. Nodes ifi;

have high minimum degrees and high connectivity—the news is not
all bad. First, we now know that the sufficient conditions studied in
Section 4.2 are the best we can have using minimum degrees and
connectivity. Second, we can discern a pattern in the various ex-
amples. A common property is that there are pairs of subsets with
high connectivity within the subsets, but nodes in each subset have
relatively few in-neighbors outside of their subsets. Therefore, new
toplogical conditions for digraphs that deal with (a) pairs of subsets
of nodes and (b) the number of nodes with “enough” in-neighbors
outside of their respective subset will be crucial to better under-
standing the convergence properties of ARC-P. Finally, we end the
section by demonstrating the results with the following example.
Example 5: [Morale dynamics on fixed topology with sin-
gle Byzantine agent]Consider a variation of the Byzantine gen-
erals problem in which the loyal generals attempt to improve the
morale of their troops and reach consensus on the level of morale
despite the influence of a subset of Byzantine generals. In addi-
tion, the troops have no knowledge of the goal of the generals. For
the purposes of this example, the state value represents the level of
morale. The sign of the value indicates either good (positive) or bad
(negative) morale and the magnitude signifies the relative levels of
morale. Here, we assume that the morale dynamics of each node
behave as an integrator with the input (influence) either given by
ARC-P, as in (5), or simply by the sum of relative morale values:

Y (@i(t) = zi(t)), 2i(0) = xo,,

JEN;

& (t) (18)

wherez;(t) is the morale value of nodeand zo, is the initial
morale value of node. We refer to the influence rule of (18) as
the linear consensus protocol (LCP), which is a special case of the
weighted sum of relative states studied extensively in the litera-
ture [14], and has been compared with ARC-P in the special case
of complete networks in [8].

Each general is able to continuously influence all of the troops
and the other generals, and the generals can provide different in-
fluence to different individuals. The influence network is shown in
Figure 6, in which nodes 17 through 20 form a clique and are the
generals (shown as squares). The other nodes are the troops (show
as circles). Troop has initial morale—i, fori = 1,...,16, and
the generals have initial morale of 1, 2, 3, and 4, respectively, for
nodes 17, 18, 19, and 20.

The central question of this example is whether either LCP or
ARC-P can ensure that the troops reach asymptotic consensus on

are Byzantine and send values 1, 2, and 3, respectively, to nodes, positive morale given that it is possible that one of the generals

in S1, V\ S, andSs. Clearly, as in the previous examples, the

is Byzantine (i.e.F" = 1). Observe that the network of Figure 6

cooperative nodes do not reach agreement, but remain fixed at theirsatisfiesB2F wheneverF = 1, with S = {17, 18,19, 20}, and

initial values.

Figure 5: Relax B2y with |S| =3F andS = 51 U S2 U Ss.

Although this section is replete with pathological examples in

can therefore sustain the compromise of a single node as Byzantine
whenever the troops and loyal generals use ARC-P. In this case, we
choose node 20 to be the Byzantine general. In order to elude de-
tection, the Byzantine general conveys a morale trajectory that sat-
isfies the preassigned strategy—either ARC-P or LCP—to the other
generals. But, to the troops, the Byzantine general conveys a highly
negative morale of-87.5. The results for LCP and ARC-P are
shown in Figure 7. The Byzantine morale trajectory shown in the
figures is the one conveyed to the other generals. Using LCP, the
troops reach consensus at a negative morale2dfand the gener-

als reach consensus at 2.5, whereas with ARC-P the troops reach
consensus at the same value of the other generals at 2.5.

This example illustrates an important property of ARQt@nly
requires local information for resilience against adversarids
contrast, without nonlocal information, the detection and identifi-
cation techniques of [16-19, 22—25] would not successfully detect

which ARC-P fails to achieve agreement—even when the networks the Byzantine general. This is because from the perspective of the
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Figure 6: Influence network in which square nodes are gener-
als and circular nodes are troops. Node 20 is Byzantine.

loyal generals, the Byzantine general behaves as it should and they
receive no feedback from the troops. From the perspective of the
troops, the Byzantine general appears to be influenced by no other
node. Hence, without prior knowledge of at least some nonlocal
aspects of the network topology, the Byzantine general remains un-
detected.

morale

©++000 Byzantine general
= = = Loyal generals

6. RELATED WORK : : : : o
0 0.5 1 15 2 25 3 3.5 4
The research most closely related to this work is [16—19, 22-25]. t(s)
In [16], the issue of detecting and identifying a single misbehaving (b) ARC-P.

agent using a linear iterative strategy in discrete-time synchronous

networks is introduced. Then, Sundaram and Hadjicostis show in Figure 7: Byzantine general attempts to reduce morale of the

[22] thatx(G) > 2F + 1 is a necessary condition for detecting and  troops. Byzantine morale shown is the one conveyed to other

identifying up toF" malicious agents using linear iterations in syn- generals. Byzantine morale conveyed to troops is87.5. ARC-

chronous networks. In the companion paper [23{7) > 2F + 1 P succeeds in the goal of improving the morale while reaching

is shown to be sufficient for the problem. In this case, the linearity consensus, but LCP fails.

of the protocol is exploited so that every node is able to calculate

the initial values exactly, and thus any function of the initial states,

in at mostn steps. The results of [22, 23] are generalized in [24] to linear systems. Attacks on nodes and on their outgoing commu-

characterize under which conditions any subset of nodes can obtaimication channels are both studied, and it is shown that from the

all of the initial values. perspective of other nodes, the two cases are indistinguishable. As
The authors of [16], later extend the analysis done in [22,23] by in[18], unknown input observers are used for the FDI scheme. The

characterizing the type of behavior of the malicious agents that is approach is demonstrated on a network of nodes using the linear

most troublesome to the linear network and by characterizing the consensus protocol of (18) augmented with the FDI scheme, and

network connectivity required to tolerate both malicious agents and on the swing equation of a power network.

non-colluding agents in [17]. A computationally expensive but ex-  There are several differences between the related works and this

act algorithm is presented in [17] to detect and identify ugto paper. First, the aforementioned works require nonlocal informa-

malicious agents in networks with connectivity at least + 1. tion on the network topology to ensure consensus. ARC-P requires

This exact algorithm requires each node to know the topology of only local information Second, the computational burden of the

the entire network. In [19], two approaches are considered to re- FDI algorithms is greater than ARC-P, which is low complexity.

duce the computational complexity and require only partial net- Third, we study directed information flow in both fixed and switch-

work information. The first assumes the network is comprised of ing topologies. The FDI schemes would not be able to handle this

weakly interconnected subcomponents and restricts the behavior ofcase because of the nonlocal information required on the network

the misbehaving nodes. The second imposes a hierarchical structopology. Fourth, the other works do not consider safety condi-

ture to detect and isolate the malicious agents. These results ardions and are therefore not suitable for safety critical applications.

combined and extended in [18]. Lastly, we study both malicious and Byzantine agents, whereas the
In [25], the authors study detection and identification of cyber aforementioned works do not consider Byzantine agents.

attacks on networked control systems modeled as continuous-time Finally, the reader may wonder how this paper relates to robust
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