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Early Years



High-Confidence Medical Device Software and Systems 
(HCMDSS)

• Organized workshop in Philadelphia, June 2005
• One hundred participants from

• academia
• medical sectors (care-givers, researchers, etc.)
• industry
• government agencies

• Sponsors: NSF, NCO, Penn Engineering
• Supporting government agencies: FDA, NIST, NSA, ARO
• Goals

• Identify research challenges and emerging issues
• Produce a comprehensive report on research needs and roadmap at the 

national level across multiple agencies
• Create a new scientific community

• www.cis.upenn.edu/hcmdss/



Roadmap
• Working Groups

• Foundations for Integration of Medical Device 
Systems/Models

• Distributed Control & Sensing of Networked Medical 
Device Systems

• Patient Modeling & Simulation
• Embedded, Real-Time, Networked System 

Infrastructures for MDSS
• High-Confidence Medical Device Software 

Development & Assurance and Medical Practice-driven 
Models 

• Certification of MDSS and Requirements

• Phase I (0-2 years)
• Understand certification process
• Create a research community
• Open experimental platforms

• Phase II (0-5 years)
• Standards for secure data, communication, context. 
• middleware infrastructure
• Interoperable, PnP device networks
• Metrics for assurance and certification
• Formalization of clinical, system requirements
• User-centered design

• Phase III (0-10 years)
• Patient models and simulators 
• Foundations for heterogeneous model-based design
• Adaptive (reconfigurable), fault-tolerant, distributed 

control
• Component-based verification/certification/testing
• Incremental certification



The Pacemaker Challenge
• Software Certification Consortium 

(SCC) in 2007
• In 2007. Brian Larson, who was at 

Boston Scientific, got permission to 
release a requirements document 
of a real, ten-year-old pacemaker
• Became the SCC challenge problem
• The SCC web site at 

http://www.cas.mcmaster.ca/wiki/i
ndex.php/Pacemaker
• Since then, much work on applying 

formal methods to modeling and 
verification of pacemakers

http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker


The Generic Infusion Pump
• Open infusion pump requirements 

and design specifications 
(incorporated lessons from earlier 
CARA work, 2002)
• Started as collaboration between 

FDA, Penn, Kansas, CIMIT, SEI, 
Minnesota, ASU, et al., 2007
• http://rtg.cis.upenn.edu/gip.php3
• FDA Infusion Pump Improvement 

Initiative, 2017
• https://www.fda.gov/medical-

devices/infusion-pumps/infusion-
pump-software-safety-research-fda

http://rtg.cis.upenn.edu/gip.php3
https://www.fda.gov/medical-devices/infusion-pumps/infusion-pump-software-safety-research-fda


Fast Forward to Present



Internet of Medical Things

patient

clinician

personalized 
automation

Autonomous
Medical Systems

Learning-enabled

devices/
systems

Medical
Cyber-Physical 
Systems (MCPS)

Internet-of-Medical 
Things (IoMT)

Software as Medical Devices 
(SaMD)



Medical Cyber-Physical Systems

Caregiver

Patient

Decision Support/Controller

Network

remote in clinic



Smart Alarm and 
Clinical Decision Support Systems



“Boy who cried wolf”



Smart Alarms in Hospitals
• Medical device alarms are non-informative

• between 80% and 99% of all alarms are false 

• Clinicians have developed alarm fatigue and may not 
respond to alarms
• A top 10 health technology hazard since 2007 by ECRI

• ECRI 2019 #7 Health Tech Hazard: Improper 
Customization of Physiologic Monitor Alarm Settings 
May Result in Missed Alarms

• Smart alarm suppression
• Maximally suppress non-informative alarms without 

suppressing actionable alarms

• Case study: low SpO2 alarms



Low SpO2 Smart Alarm Results
• Dataset: 100 children at CHOP 

• Alarms are annotated by clinicians via video 
feedback

• AdaBoost with reject option algorithm
• Prioritize achieving a low false negative rate 

for each weak learner
• Only make a decision when almost all weak 

learners agree
• identifies “easy to silence” alarms

• Results:
• 100% sensitivity to actionable alarms
• Silenced 23% of alarms (413 of 1786)
• Significantly outperforms other learning 

approaches

• Future work: Smart Alarm 2.0
• Context-aware smart alarm
• How to model caregivers and tune system?
• In-clinic vs. at-home monitoring?

[CHASE2018]



Challenges of Clinical Decision Support

Actionable Clinical 
Decision Support

(learning-enabled)

Inter/Intra Patient 
Variability

We want Big Deep data  …

Health Data

Lots of data (i.e., “Big Data”)

“Deep Data”
e.g., good 
sampling of 
distribution

Health Data

Big Thin Data

… but we have Big Thin data.

“Thin Data” – poor sampling of distribution
• Inter/intra-patient variability
• Anomalies (e.g., bad data)
• Limited sensing/actuation

Consider a population’s data
Presents a Fundamental Technical Challenge



Challenges of Clinical Decision Support

Bias/Fairness
(learning-
enabled)

Actionable Clinical 
Decision Support

(learning-enabled)

Inter/Intra Patient 
Variability

Security/
Privacy

• Inter/intra-patient variability
• Anomalies (e.g., bad data)
• Dataset shifts (e.g., co-morbidites)
• Limited data, bias, fairness
• Privacy, differential privacy
• Regulatory Challenge*

*[FDA, Proposed Regulatory Framework for Modifications to AI/ML Based Software as a Medical Device, 2019]

Regulatory/
Certifiability



Data-driven Behavior Modeling & 
Learning-enabled Closed-the-
Loop Systems



IoMT applications interact with human operators who act as 
supervisors or collaborators

Human-in/on-the-loop CPS

“There is a need for research focused on human interaction 
with systems that operate in the physical world, particularly 
around issues of safety, trust, and predictability of response.” 

The Global Hawk incident 
caused by the lack of proper 
coordination between 
operator and autonomy



Data-driven behavior modeling for diabetic patients
• 30% - 40% T1D patients in the US use insulin pumps
• Requires user supervision

• Input meal information, approve pump-suggested boluses, give non-
mealtime boluses, calibrate CGM sensor

• American Association of Clinical Endocrinologists report highlights critical 
needs for better understanding the physiological and psychological
impacts of insulin pumps on diabetic users

Clinically-relevant insights 
from in silico analysis via quantitative 
verification

Real patients’ data
• 55 T1D patients
• ≈ 30 days



Trust Clusters
38 Patients

12 Patients 3 Patients

2 Patients

92% Follow5% High

3% Low

26% Follow73% High

1% Low

75% Follow21% High

4% Low

63% Follow7% High

30% Low

User Selected
Bolus Dose

Pump Suggested
Bolus Dose

[ICHI’15]



Our Approach & Analysis Results
• Behavioral modeling: unsupervised learning
• Physiological modeling: fitting a standard 

physiological model
• Closed-loop analysis: probabilistic model checking
• Patient education/peer-support: how behaviors 

affect outcomes

CGM/Insulin Pump 
Clinical Data

Behavioral 
Model

Physiological 
Model

Closed-Loop
Analysis

Patient 
Education

• PRISM model checker
• Support probabilistic transitions
• Enables exhaustive check all execution paths of a model

• Integrate individualized physiological model and behavioral models
• Explore how changing behavior types may impact outcomes
• Hypoglycemia: % of CGM readings < 70 mg/dL
• Hyperglycemia: % of CGM readings > 180 mg/dL



Safe Learning-Enabled Physiological Controlpatient clinician

Challenge: assuring safety w/ learning-enabled components in-the-loop

• Key observation: derivative of a sigmoid

𝜎 𝑥 =
1

1 + 𝑒'(
,

𝑑𝜎
𝑑𝑥

𝑥 = 𝜎 𝑥 ⋅ (1 − 𝜎 𝑥 )

• Introduce a proxy function 

𝑔 𝑡, 𝑥 =
1

1 + 𝑒'1(
• where 𝑔 1, 𝑥 = 𝜎(𝑥) and �̇� = 𝑥𝑔 𝑡, 𝑥 1 − 𝑔 𝑡, 𝑥 , 𝑔 0, 𝑥 = 0.5

• Each neuron in DNN can be encoded by a corresponding 𝑔

21Verisig (www.verisig.org)21

deep neural network
(sigmoid, tanh, swish, etc.)

physiological model
(hybrid system)

Safety property

Keras
model

SpaceEx
model

SpaceEx config file

[HSCC‘19]

current applications

Mechanical Ventilation 
Weaning

• Adaptive Support 
Ventilation (Hamilton)

• SmartCare/PS (Drager)

Type 1 Diabetes

• Medtronic 670G / 690G
• Dexcom + t:slim X2
• OpenAPS – NOT 

APPROVED

Autowean: Foundations for Autonomous Medical CPS for Mechanical 
Ventilation Weaning (NIH 1R01EB029767-01)



Human-in-the-Loop
• Interactions between caregivers, patients, 

and autonomous medical systems
• How can we assure safety?
• Analysis of safety and effectiveness needs to 

take their behaviors into consideration
• Better modeling techniques
• How much the user trusts the system
• When and how the user interferes with 

automation

Techniques 
based 
on models
(insufficient)

Techniques 
based 

on data
(insufficient)

The Future:
combining 

model-based 
with data-

driven



Next-Generation Medical Systems

No
Autonomy

Technology
Assistance

Task
Autonomy

Conditional
Autonomy

High
Autonomy

Full
Autonomy

Levels of autonomy



Challenges of learning-enabled autonomous 
medical systems
• Modeling patient physiology
• Understanding human-automation interactions
• Formal design of closed-loop systems with human-in-the-loop
• Human factors in MCPS
• Safety and fairness assurance (and certification)
• Security and privacy
• Interoperable medical device platforms that are open and 

trustworthy
• Benchmark problems/testbeds



Thank You!


