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High-Confidence Medical Device Software and Systems
(HCMDSS)

Organized workshop in Philadelphia, June 2005

One hundred participants from
* academia
* medical sectors (care-givers, researchers, etc.)
e industry
* government agencies

Sponsors: NSF, NCO, Penn Engineering
Supporting government agencies: FDA, NIST, NSA, ARO

Goals
* Identify research challenges and emerging issues

* Produce a comprehensive report on research needs and roadmap at the
national level across multiple agencies

* Create a new scientific community

e www.cis.upenn.edu/hcmdss/
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Roadmap

. Worklng Groups

* Phase | (0-2 years)

Penn.
Engineering

Foundations for Integration of Medical Device
Systems/Models

Distributed Control & Sensing of Networked Medical
Device Systems :

Patient Modeling & Simulatiol

Embedded, Real-Time, Netwo
Infrastructures for MDSS

High-Confidence Medical Dev
Development & Assurance an:
Models

Certification of MDSS and Reg

Understand certification proce
Create a research community
Open experimental platforms

* Phase Il (0-5 years)
* Standards for secure data, communication, context.
* middleware infrastructure
NP device networks
ance and certification
clinical, system requirements

5 and simulators
r heterogeneous model-based design
nfigurable), fault-tolerant, distributed

ised verification/certification/testing
e rtification
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The Pacemaker Challenge

e Software Certification Consortium
(SCC) in 2007 Model-Driven Development + Timing Analysis

* In 2007, Brian Larson, who was at [ EEreil e L (e

Boston Scientific, got permission to

. (1) Timed (3)
N Develop- G” automata compiled ‘
release a requirements document poae P | cuome w o

of a real, ten-year-old pacemaker S
* Became the SCC challenge problem - ——
¢ The SCC W€b Slte at Verification Model checking Mea[)s:;:? it
) o o /o and with UPPAAL timing analysis
http://www.cas.mcmaster.ca/wiki/i vaidtion - -
ndex.php/Pacemaker é By Bl
 Since then, much work on applying
formal methods to modeling and
verification of pacemakers
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http://www.cas.mcmaster.ca/wiki/index.php/Pacemaker

The Generic Infusion Pump

The Generic Infusion Pump (GIP)

° Open InfUSIOn pump reqUIrementS A workbench for improving safety, security and usability of medical systems
and design specifications

(incorporated lessons from earlier TR O O . A0 | . |
CA RA WO r k 2 O O 2 ) Documents HCI rI]Désign./

* Started as collaboration between &8 o A m ' =
FDA, Penn, Kansas, CIMIT, SEl, I | oo o] | [ e |
Minnesota, ASU, et al., 2007

L]
e http://rt d hp3 — -
. I . C | S . U e NN . e U | . Generic Infusion Pump Research Project
: FDA « Penn « UMN ¢ KSU ¢ CHI+MED * CIMIT * SEI « ASU  McMaster * U Michigan « U Buffalo * Drexel U « U Minho
* FDA Inf Pump Im ment
nrtusion ru rovemen
L] L] L]
I n I t I a t I Ve 2 O 1 7 Medical infusion pumps deliver medicine (e.g. drugs, food nutrients, chemicals) to patients in various physical conditions. These types of devices are
) ubiquitous in health care settings from hospitals, to nursing homes, to private residences. Researchers in FDA/CDRH/ Office of Science and
Engineering Laboratories (OSEL) developed the notion of a Generic Infusion Pump (GIP) safety “reference” model in response to extensive evidence
([ ]

https://www.fda.gov/medical- e oo e
d eV| Ce S / | n fu S I O n - p u m p S / I n f u S I O n - :Zsei ;[Z Vs:’f:’t:tr’r;c::(e;le s::::; ts:::svfaze;anrf:;afze:;j; tsr::r causes, and control measures common to all types of medical infusion pumps at a
pump-sottware-sarety-research-tda
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http://rtg.cis.upenn.edu/gip.php3
https://www.fda.gov/medical-devices/infusion-pumps/infusion-pump-software-safety-research-fda
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Internet of Medical Things

Internet-of-Medical
% Things (loMT)
&> g
* Medical W =
Cyber-Physical

Systems (MCPS)

Autonomous

= Medical Systems
e / devices/ ﬁ
, 0 systems
‘ =T | Software as Medical Devices
it O (SaMD)
personalized ; -
; automation
-
Learning-enabled — ?Q
R} . .' - ;,5 =) ‘
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Medical Cyber-Physical Systems

in clinic

7>\ Caregiver
(i)




Smart Alarm and
Clinical Decision Support Systems
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CBS NEWS  February 24, 2011, 12:37 PM

THE WALL STREET JOURNAL, Q
“Alarm fatigue™ blamed i n i | s
hospltal deaths At the Hospital, Better Responses

~ mvzamemy 10 Those Beeping Alarms

When patients’ monitors beep falsely, nurses and doctors can
get ‘alarm fatigue’ and miss real warnings

-

AP

Comment / T 5 Shares Boston Globe l
A Boston Globe investigai i
put patients at risk. aff; the

The newspaper says more .

SEPTEMBER 10, 2015 | THE PULSE

Beep, beep, beep - hospital alarms sound
mostly without real cause

Beep, beep, beep - hospital alarms sound mostly without re...
Listen 0:00 / 9:31




Smart Alarms in Hospitals

* Medical device alarms are non-informative
* between 80% and 99% of all alarms are false

e Clinicians have developed alarm fatigue and may not
respond to alarms

e A top 10 health technology hazard since 2007 by ECRI

e ECRI 2019 #7 Health Tech Hazard: Improper
Customization of Physiologic Monitor Alarm Settings
May Result in Missed Alarms

e Smart alarm suppression

* Maximally suppress non-informative alarms without
suppressing actionable alarms

e Case study: low SpO2 alarms

Penn
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Low SpO2 Smart Alarm Results

e Dataset: 100 children at CHOP
* Alarms are annotated by clinicians via video

* AdaBoost with reject option algorithm
* Prioritize achieving a low false negative rate

feedback

for each weak learner

* Only make a decision when almost all weak

learners agree

* identifies “easy to silence” alarms

e Results:

e Future work: Smart Alarm 2.0

e Context-aware smart alarm

* How to model caregivers and tune system?
* In-clinic vs. at-home monitoring?

L!ARJ_!
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* 100% sensitivity to actionable alarms
» Silenced 23% of alarms (413 of 1786)
 Significantly outperforms other learning

approaches
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(a) Case #1

[CHASE2018]

time at 5-second interval

(b) Case #2
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Challenges of Clinical Decision Support

e

Actionable Clinical )
. . Inter/Intra Patient
Decision Support Variabilit
(learning-enabled) y
\

J

Presents a Fundamental Technical Challenge

We want Big Deep data €onsider a popu'ation’s data - but we have Big Thin data.

teeen

“Deep Data” “Thin Data” — poor sampling of distribution
H ea |th Data e.g., good * Inter/intra-patient variability

sampling of  Anomalies (e.g., bad data)

distribution e Limited sensing/actuation

\—'—I

SR Lots of data (i.e., “Big Data”) Big Thin Data PRECISE



Challenges of Clinical Decision Support

-

Decision Support
(learning-enabled)

[Actionable Clinical

]

.

\
Inter/Intra Patient B'ﬁ;ﬁ I-;crv‘li;ne:ss Security/ Regulatory/
Variability & Privacy Certifiability 000
enabled)
J

BRI

2N

* Inter/intra-patient variability
 Anomalies (e.g., bad data)

* Dataset shifts (e.g., co-morbidites)
* Limited data, bias, fairness

* Privacy, differential privacy

* Regulatory Challenge*
*[FDA, Proposed Regulatory Framework for Modifications to Al/ML Based Software as a Medical Device, 2019]
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Data-driven Behavior Modeling &
Learning-enabled Closed-the-
Loop Systems
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Human-in/on-the-loop CPS

loMT applications interact with human operators who act as
supervisors or collaborators

Contains Nonbinding Recommendations

Applying Human Factors and

Global Hawk UAV, 98-2003, 19991206, FSPM 1201A

REPORT TO THE PRESIDENT Usability Engineering to Medical
AND CONGRESS Devices
ENSURING LEADERSHIP IN
FEDERALLY FUNDED Guidance for Industry and Food
RESEARCH AND DEVELOPMENT IN and Drug Administration Staff

INFORMATION TECHNOLOGY

Document issued on: February 3, 2016

As of April 3, 2016, this document supersedes “Medical Device Use-Safety:
Incorporating Human Factors Engineering into Risk Management” issued
July 18, 2000.
Executive Office of the President

The draft of this document was issued on June 21, 2011.
President’s Council of Advisors on

Science and Technology For questions regarding this document, contact the Human Factors Premarket Evaluation
Team at (301) 796-5580.

The Global HaWk incident — ) i man Factors Divisiol
W » iation Administratiol
caused by the lack of proper . oo
. . Ry :
coordination between .

operator and autonomy

“There is a need for research focused on human interaction
with systems that operate in the physical world, particularly
around issues of safety, trust, and predictability of response.”
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Data-driven behavior modeling for diabetic patients

 30%-40% T1D patients in the US use insulin pumps
* Requires user supervision
* |nput meal information, approve pump-suggested boluses, give non-
mealtime boluses, calibrate CGM sensor
 American Association of Clinical Endocrinologists report highlights critical
needs for better understanding the physiological and psychological

impacts of insulin pumps on diabetic users

400 - .
——CGM Data CGM Reading \ Behavior

350 (- .
v Insulin Bolus . Model

300 [- A Meal

250 (- v

Real patients’ data e Cars S
e 55T1D patients - t
e =30 dayS ol - Glucose/Insulin

Insulin Bolus Request

Continuous Physiology Insulin Infusion

0 500 1000 1500 Glucose
. Monitoring (CGM) \ \
(T # meal-time)

T = meal-time » (CGM > threshold)

Clinically-relevant insights
from in silico analysis via quantitative

Carb! _ BWZ?[ ] T
Eat o Trust Correct verification
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Trust Clusters

, 38 Patients . 2 Patients
User Selected o ' BWZ-recommended versus user-selected boluses I ,-_BWZ-reCOmmended Versus user-selected boluses |
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(a) Trust T1: high probability of following BWZ-recommended doses (b) Trust T2: high probability of increasing BWZ-recommended doses
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(c) Trust T3: moderate probability of increasing BWZ-recommended doses (d) Trust T4: high probability of decreasing BWZ-recommended doses
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Our Approach & Analysis Results

* PRISM model checker
e Support probabilistic transitions

* Behavioral modeling: unsupervised learning

* Physiological modeling: fitting a standard .
physiological model .

* Closed-loop analysis: probabilistic model checking .

» Patient education/peer-support: how behaviors
affect outcomes

Enables exhaustive check all execution paths of a model

Integrate individualized physiological model and behavioral models
* Explore how changing behavior types may impact outcomes
Hypoglycemia: % of CGM readings < 70 mg/dL

*  Hyperglycemia: % of CGM readings > 180 mg/dL

Hypoglycemia | Hyperglycemia
ETC Type | o (%) Rate (%)
Actual type E3T2C1 6.93 8.43
Change E1T2C1 6.20 12.78
E subtype E2T2C1 5.99 13.72
Change E3TI1C1 0.02 10.33
T subtype E3T3Cl1 0.04 10.09
E3T4C1 0.02 11.05
Change E3T2C2 7.04 6.30
Behavioral C subtype E3T2C3 6.95 7.93
Change E2T1C1 0.04 16.46
Model g E2T2C1 5.99 13.72
multl-subtypes | p37)C3 0.10 9.76
E2T1C3 0.08 15.42
. - Patien
CGM/Insulin Pump Closed L?Op atie . L BTC Hypoglycemia | Hyperglycemia
Clinical Data Analysis Education Type Rate (%) Rate (%)
Actual type EITIC1 0 43.92
Change E2T1C1 0 44.38
. . E subtype E3T1C1 0 41.62
Physiological Change EIT2CI 0 39.13
E1T3Cl1 0 43.46
Model T subtype E1T4C1 0 4531
Change E1TIC2 0 41.59
C subtype E1T1C3 0 43.47
E1T2C2 0 37.22
Change E3T2C1 0 35.45
multi-subtypes E3T1C2 0 38.01
E3T2C2 0 32.56

8 Penn
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Safe Learning-Enabled Physiological Control

Challenge: assuring safety w/ learning-enabled components in-the-loop

* Key observation: derivative of a sigmoid Y o
1 do current applications
o(x) = PE— — ) =0x)-(1-0))
1+e dx . - :

. o Mechanical Ventilation Type 1 Diabetes

* Introduce a proxy function DR i
Weaning
t,x) = ——
9t %) 1+etx

* where g(1,x) = o(x) and g = xg(t, x)(l —g(t, x)), g(0,x) =0.5
* Each neuron in DNN can be encoded by a corresponding g

deep neural network Safety property [HSCC19]
(sigmoid, taph, swish, etc.)

SpaceEx config file
Keras

Medtronic 670G / 690G
Adaptive Support Dexcom + t:slim X2
Ventilation (Hamilton) OpenAPS — NOT
SmartCare/PS (Drager) APPROVED

physiological model
(hybrid system)

Autowean: Foundations for Autonomous Medical CPS for Mechanical
Ventilation Weaning (NIH 1RO1EB029767-01) P R E | S E

x; < —0.07
x; = —0.07

SpaceEx
model

Verisig (www.verisig.org)

x; > 0.07
xp = 0.07




Human-in-the-Loop

* Interactions between caregivers, patients,
and autonomous medical systems

* How can we assure safety?

* Analysis of safety and effectiveness needs to
take their behaviors into consideration

* Better modeling techniques

Techni i
 How much the user trusts the system st Techn;:::;
* When and how the user interferes with on models on data

(insufficient) (insufficient)

automation




Operator performe
all tasks including
monitoring,
generating
performance
optiors, selecting
the optionto
perform [decision-
making), and
executing the
decision made.

No
Autonomy

[ P
L& L E€NN
&, Engineering

Next-Generation Medical Systems

Operator

maintairs
tinuowus

ontrolofthe
mwhile tha

ot provides

certainassistance.

Technology
Assistance

Levels of autonomy

(2

Operator
maintaire
discrete cortrol
ofthe system,
and the robot
canperform
certain
operator-
initiated tasks
autormatically.

Task
Autonomy

©

Operator
selectsand
approvesa
surgical plan,
andthe

X (213

ormatically
but withcloss
surgical
oversight by
hurman.

Conditional
Autonomy

14

Robot isable to
make decisiore
but underthe
supervisionofa
qualified
operator,

High

Autonomy

No hurman

entire surgery,

—

'/)
Full
Autonomy
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Challenges of learning-enabled autonomous
medical systems

* Modeling patient physiology

* Understanding human-automation interactions

* Formal design of closed-loop systems with human-in-the-loop
 Human factors in MCPS

 Safety and fairness assurance (and certification)

e Security and privacy

* Interoperable medical device platforms that are open and
trustworthy

* Benchmark problems/testbeds
& L PRECISE
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Thank You!
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