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1 SUMMARY 

The META language and tool flow has been developed to support model-based, component-centric 
development of complex cyber-physical systems.  This report describes the basic concepts driving the 
approach, the language implementation, and the tools developed to implement the design flow.   

The overall process is described, showing how components are used in a successive refinement of 
design spaces to converge upon a set of feasible designs.  The core concepts and semantic foundations 
of the language are described, along with an overview of the language.   Design space exploration is 
presented as implemented in the DESERT tool.  Composition of models to supported analysis tools is 
described, along with the concept of executable requirements in the form of Test Benches. 

Mechanisms to support multi-fidelity/multi-abstraction representation and analysis of system models 
are described, along with the tools implementing the balance between accuracy and cost of 
computations.  Analysis of system dynamics using Modelica and Bond Graphs is described for lumped 
parameter analysis.  Geometric analysis tools using automated analysis of CAD models are described, 
along with analysis using Finite Element Methods. 

 An overall execution infrastructure was developed to manage execution of computationally intensive 
analyses on parallel computers, along with visualization techniques.  Verification methods are 
described. 

Finally, experiences using the tools in FANG and the user threads are described. 

  



 

META-X Design Flow Tools: FA8650-10-C-7082 Page 2 

 

2  INTRODUCTION 

The META-X Toolset has been developed to support component-based design of complex 
cyberphysical systems. These systems include military vehicles, as exemplified by the systems defined 
by the requirements for the Fast Adaptable Next-Generation Ground Vehicle (FANG) Competition. 

The tools implement a set of concepts formulated under the META and AVM program to dramatically 
reduce the cost and schedule required to achieve the first limited production of a target vehicle. The 
primary concepts are: 

 Component-Based Design is defined as a deep, complete set of components being developed 

via the C2M2L program, to include full, multi-domain, producible components. The 

components are, by design, composable to produce subsystems and systems that can be 

analyzed, simulated, assembled in 3D, and verified. 

 Domain-Specific Modeling Languages (DSML) and modeling tools (developed outside this 

SOW) to support construction of designs and design spaces to represent cyberphysical 

systems in terms of architectures of interconnected components, multi-physical interactions, 

and multi-dimensional spaces of design options. As there are three primary options for META-

X tools and design data need to be communicated with the AVM manufacturing tools, an 

interchange format has been defined to support translation of designs and components 

between vendors. 

 Design flow tools, to support composition of the component-based designs for a variety of 

analyses, including: 

o Constraint-based design space exploration, 

o Dynamics simulation,  

o 3D structural/thermal analysis with finite element analysis (FEA). 

 Leverage off-the-shelf open source and commercial tools.  

 Support scoring of designs by computing Key Performance Parameters on the system and 

scoring designs against requirements and stakeholder preferences (via MAUF). 

 Complexity analysis tools help the designer rapidly assess the structural and parametric 

complexity of the design, providing comparison of architectures for future developmental 

success. Lower complexity leads to less design effort, reduced risk, and fewer unintended 

problems. 

 Verification tools help to identify potential problems prior to build. Multiple approaches are 

being applied to system verification, ensuring scalability and coverage. Qualitative and 

Relational abstractions are used to explore system behavior. Probabilistic state machines are 

used for evaluation of potential system faults and culprit analysis. Probabilistic verification 

techniques are used to create a Probabilistic Certificate of Correctness, identifying the impact 

of component property variation on the ability of the system to meet requirements. The PCC is 

intended to help reduce the level of testing needed to establish confidence in delivered system 

performance. 

 Manufacturing composition tools produce design snapshots for evaluation of 

manufacturability by iFAB/Foundry, and the final Technical Data Package needed to produce 
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the target system. The META design tools are evolving to produce an increasing fraction of the 

data needed to manufacture the system and integrate manufacturability tests in the design 

flow 

 Vehicle Forge interfaces permit the seamless interaction with the repository, which houses the 

global component library, as well as the project collaboration for teams of designers. The 

META tools must import curated components and export new/experimental components for 

curation to incorporate and produce components. For project collaboration, the tools must 

upload and download designs (intermediate and complete) for intra-team collaboration and 

exchange of results. For scoring, the META tools must upload analysis results in a controlled 

manner to provide relative comparison of competing designs. 

This report describes the development of the META tools under the META Design Flow FA8650-10-C-
7082 contract.  
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3 META X DESIGN FLOW AND TOOLS 

The META X Design Flow methodology and tools that were developed to support this methodology 
are described in the sections below. 

3.1 META DESIGN FLOW AND DESIGN ABSTRACTIONS 

META design flow supports analysis of target designs over a range of domains and abstractions.  

 Physical domains are selectable in the META composition process, to suit the needs of an 

analysis: 

o Understanding and evaluation of CyberPhysical designs requires analysis in many 

physical domains. As there are interactions between domains (e.g., Mechanical friction 

generates heat), multiple physical domains must be evaluated concurrently. 

o Any specific evaluation is toward a purpose, computing metrics on a design to a 

needed fidelity and range of interactions. Evaluating against a greater set of physical 

domains typically results in greater computation, taking more time in the best case, or 

resulting in intractable analyses at worst. 

 

FIGURE 1: META TARGET DOMAINS AND ABSTRACTIONS 

 Abstractions are supported on axes of the evaluation space 

o Model abstraction permits the user to select the appropriate level of detail in the 

component to achieve an analysis goal. Modeling a vehicle suspension is an example. 

For rough performance and speed across a nominal terrain, the suspension can be 

abstracted to a simple rolling resistance. To compute the power transmitted from the 

terrain or obstacle, a fidelity level capturing spring-damper responses of the 

suspension is required. 
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o Hierarchical abstractions permit using a single model representing the combined 

behavior of all subsystems, when feasible. This can result in greatly simplified 

computation and can be used to support in-the-loop computation. 

Figure 2 illustrates multiple levels of abstraction, representative size of the problem, and mechanisms 
for support of the abstraction under CyPhy/META design flow tools. 

Traversing along the Physical Domains, the models represent behavior and interfaces appropriate to 
the component and the level of detail needed for a range of applications. For example, motor 
generates mechanical power, uses electrical energy, and produces thermal energy as waste heat. 
Simple analysis may ignore heat for 1st order analysis. 

Traversing along Model Abstraction, a model can use a variety of mathematical representations for 
capturing the behavior of the component. The figure below shows a few of these for the electrical 
motor, from a Qualitative representation of basic input/output and states, thru ordinary differential 
equations, to full geometrical/distributed structural, force, and electromagnetic field representations. 
Each of these abstractions is appropriate for certain evaluations, at a certain computational cost. 

 

 

FIGURE 2: EXAMPLE ELECTRIC MOTOR WITH META ABSTRACTIONS 



 

META-X Design Flow Tools: FA8650-10-C-7082 Page 6 

 

Typically, an electrical motor within a context is represented by the schematic on the top line of the 
table. The motor is treated as a 3 terminal component, conducting electrical power thru inductive and 
resistive loads, and producing a torque with inertia and rotating resistance. 

Qualitative representations of the motor are concerned with the direction and acceleration of the 
device, using two state discrete variables. The qualitative computational complexity is order N. With 
this approach, we can explore the discrete space of the system. 

Relational abstractions linearize the system dynamics, again using two variables, but continuous 
representations. Equations can be computed with a worst-case Order N cubed, with simplification 
possible. We can rapidly explore the continuous state space of the system. 

Ordinary Differential Equation/Hybrid System Models capture the nonlinear behavior of the system 
with a lumped parameter model. These equations are amenable to simulations, which, with proper 
stimuli, can explore trajectories of system behavior over timeframes related to the inertial time 
constants of the system 

Finally, a Partial differential Equation formalism captures the full three-dimensional (3-D) 
electromagnetic current and flux interactions of the motor’s stators and rotors and windings. Forces 
can be computed at specific angular positions, and geometrical parameters can be evaluated. Much 
higher resolution models are required, along with complex gridding and spatial solvers. The 
complexity of this calculation is orders of magnitude greater than the others. 

META also supports hierarchical abstraction of a system, capturing system/subsystem, part-whole 
hierarchies. In addition to allowing gradual refinement of systems at design time, the computation 
time and accuracy of a system analysis can be controlled by representing peripheral subsystems at an 
aggregated level, while critical systems are analyzed in detail. The META Language and Tool Flow 
projects have been developed to fully support these abstractions, both in representing a system and in 
automatic composition of analysis of these systems in a computationally efficient manner. 

META design flow support of these abstractions and phenomena is described in the detailed sections 
below.  
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3.2 META AND THE AVM DESIGN FLOW 

The conceptual design flow for AVM is shown in Figure 3. 

 

FIGURE 3: AVM OVERALL INFORMATION FLOW DIAGRAM 

This flow diagram was conceived by DARPA with input from META and other AVM participants. The 
diagram has been color coded to show the state of the META tools in supporting the AVM goals. 

Semantic Integration is a task of the META Design Language, which is used by the Design Flow. It is 
currently developed, however in a flexible manner to allow expansion as new requirements evolve. 
META Design Flow is closely coupled with this effort, as composition of analyses relies on a full and 
strict alignment with model semantics. 

Component and Context models are the physical instantiation of the model semantics, capturing 
component multiphysics behavior. These are integrated and continue to evolve and expand in content, 
but formats and semantics are integrated into the flow. 

Design space exploration tools allow rapid evaluation and constraint-based reduction of large 
design spaces into feasible sets. DESERT implements a static constraint solver using BDD techniques, 
the implementation under META Design Flow (described below), are fully integrated into the tools. 

Qualitative Reasoning explores the system’s performance space with the envisioned qualitative 
model and has been integrated into the design flow. These tools have been developed and adapted to 
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AVM by PARC. While the tools are integrated, implementation of C2M2L models prevented the 
widespread use of these tools in FANG 1. 

Relational Abstractions, also explores the system’s performance space, but using an employing 
relational model abstraction, has been integrated into the design flow. These tools have been 
developed and adapted to AVM by SRI. While the tools are integrated, implementation of C2M2L 
models prevented the widespread use of these tools in FANG 1. 

Ordinary Differential Equation-based analysis/Dynamics Analysis forms the core of the 
dynamics analysis capabilities implemented in META and used in FANG 1. These capabilities have 
progressed thru two phases during the META design flow project. Initially, Bond Graph-based 
dynamics simulations were used for acausal component behavior modeling. Models were translated 
to a Simulink-based execution platform. As a result of C2M2L component supplier decisions, an 
additional Modelica-based execution platform was added. This had impacts on both language and 
tools. Both were developed and integrated into the design flow. 

The Controller modeling and simulation capability was integrated into the META design flow, 
supporting both state machine and signal flow specification of controllers, with a code-synthesis and 
co-simulation with the dynamics simulation. This is integrated and used in FANG. 

Nonlinear Analysis, in the form of Finite Element Analysis has been integrated into the tools, with 
the ability to compute static stress for a CyPhy system model. This tool has been integrated and 
demonstrated, however no FANG 1 requirements needed this analysis for the competition. This 
capability implements a composition of geometry files, with gridding and composition of 
Abaqus/NASTRAN input files and post-processing of results. 

CAD composition tools have been developed and integrated into the META tool flow. These permit 
creation of an assembled 3D model of the system geometry, using the geometry of the components. 
This tool has been heavily used in the FANG competition. 

Mobility Simulation has been developed and integrated in an experimental mode. The use in FANG 
was limited by component capabilities, primarily the ability to compose kinematic joints from the 
models. The tool permits co-simulation of the 3D physics with dynamics models. 

Complexity Metrics were developed and integrated into the tools. Two types of complexity metrics 
were created under subcontracts with MIT. A structural complexity metric computes the graph-
energy of a design, combining component complexity with interaction graph-arc strength from Oli 
DeWeck’s team. An information uncertainty-based complexity metric uses the uncertainty 
encountered in simulation of the system. The information uncertainty metric was developed by Karen 
Wilcox’s team at MIT. 
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3.3 META DESIGN FLOW AND INTEGRATION OF LANGUAGES, DESIGN 
PROCESSES, AND TOOLS 

The META Tool flow maps to a variety of tools and technologies. Figure 4 summarizes these concepts. 

 

FIGURE 4: MAPPING OF LANGUAGE, DESIGN FLOW, AND TOOLS 

META Design Flow leverages many concepts and tools from research and industry. It also strives to 
support the conventional phases of design flow, from conceptual/architectural to detailed design flow. 
Below is a brief summary of the concepts expressed: 

 Architecture design or Conceptual phase uses CyPhy and its sublanguages to express 

components used and component/architectural/parametric design space options. 

Exploration occurs based on static evaluation of component and system properties. (e.g., 

weight/parts costs, interface compatibility, et cetera). The GME/CyPhy and DESERT tools 

support these operations. 

 Integrated Multi-Physics/Cyber Design phases implement a modeling/ simulation/ 

Verification & Validation loop focused on refining designs to achieve target system 

requirements with a satisfactory design. Specific tools and associated languages include: 

o Design Modeling/Specification: CyPhy/GME for system architecture, CAD (ProE) for 

geometry, Bond Graph & Modelica (Dymola, OpenModelia) for dynamics Behavior, 

SEER for costing, StateFlow, SignalFlow Language for control algorithms (ESMOL) 
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o Simulation Analysis: Test Bench (CyPhy), FMI for coupled multi-sims, C2WindTunnel 

(C2WT) for simulation integration, along with other domain tools. 

o Verification and Validation leverages the dynamics simulations to compute 

Probabilistic Certificate of Correctness using OSU probabilistic computations in 

dynamics simulation models, under the runtime of OpenMDAO. Other exploration of 

performance state space is accomplished with reduced fidelity models of Qualitative 

Reasoning, Relational Abstraction (for continuous dynamics) and the SIFT tools for 

probabilistic models of failure.  

 Detailed Design completes the design process and computes deeper domain analyses, with 

the goal of providing more accuracy and discovery of unintended interactions or black 

swans, that is, the “extreme impact of certain kinds of rare and unpredictable events 

(outliers) and humans' tendency to find simplistic explanations for these events 

retrospectively” (Wikipedia). Specific tools include: 

o Modelica/StateFlow/SignalFlow Language for coupled dynamics with detailed 

TrueTime computational simulations, and Finite Element-Based computations for 

structural, thermal, and Fluids. 
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4 META DESIGN FLOW TOOL ARCHITECTURE 

The META Design Flow tools for CyPhy computational architecture is shown below. Each block is a 
subsystem that integrates with models, and/or domain tools. 

 

FIGURE 5: META DESIGN FLOW COMPUTATIONAL ARCHITECTURE 

The external tools are shown on the top line of the diagram. They were not developed under META 
Design Flow, but are shown for context. Abbreviations (e.g., MX.CLM) are references to the internal 
design process task tracking/schedule, and can be ignored for the purpose of this report. 

The CyPhy Model Editor provides the user interface, model repository, and backplane for tool 
integration. It provides a structured, programmatic interface to models, and a mechanism to enforce 
domain-specific language semantics on the models. The editor provides bindings for several 
languages for model access and manipulation, which are used by the various composition engines (C#, 
C++, Python, Java) 

Desert operates on the CyPhy model, converting from a design space alternative structure to a set of 
design points based on constraint satisfaction. This tool performs in-place modification of the CyPhy 
model, adding a specification that  

The Master Interpreter executes design flow operations on models and DESERT generated 
constrained design configuration models, coordinating execution of tools in the correct order. 
Typically, the component tools are not manually accessed by the user. In addition to coordinating 
execution, the Master Interpreter manages the flow of results and the coordination of test bench 
results into a logical, consistent structure. 
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The Dynamics Interpreter converts the design architecture and component models as a system under 
test (SUT) along with the test bench containing scenarios, environments, and post processing into an 
executable Modelica model with surrounding metrics extraction operators. The targets for the 
Dynamics interpreter are OpenModelica and Dymola, using Python 2.7 for post processing. 

The CAD interpreter evaluates models for their structural connections and produces a connectivity 
specification file. Another service interprets the connectivity and constructs the target CAD file via the 
automation interface of Creo/ProE to apply assembly constraints, produce standard CAD file outputs, 
and compute a set of metrics for evaluations such as bounding box/transportability and center of 
gravity. 

Finite Element analysis composition leverages CAD composition to create geometric representations 
of a design, followed by preparation of the finite element analysis (FEA) input deck (Grids, Boundary 
conditions, Forcing functions). FEA codes are executed and results extracted (e.g., max Von Mises 
stress). This tool leverages NASTRAN, Abaqus, and Calculix. 

The PET/PCC interpreter evaluates PET models and constructs a configuration for execution under 
OpenMDAO. OpenMDAO is an open-source toolkit for implementing Analysis chains under the control 
of a DOE or parameter optimization service. For the purposes of the META design flow tools, the OSU 
PCC methods have been incorporated into the OpenMDAO framework to support computation of 
Probabilistic Certificate= of Correctness data.  

4.1 DESIGN SPACE EXPLORATION 

The DESERT Tool is a highly scalable mechanism for managing large-scale design spaces, such as 
those that can be easily represented in the CyPhy language. Design space is expanded by including 
structural alternatives, via CyPhy language constructs. The nominal semantics of a component or 
assembly alternative is to include the all permutations of all choices in the model. Consequently, with 
even a few component alternatives, design spaces can grow well beyond the capability to simulate or 
even elaborate design options. 

DESERT uses the technique of Multi-Terminal Binary Decision Diagrams to compactly represent the 
design alternatives. Once represented, constraints can be defined as operators on the MTBDD to 
reduce the open space of the design. The design space does not need to be elaborated until after all 
constraints are applied, and design point instances are needed for further analysis. 

The design space representation is captured in the schema below. The design architecture and 
alternatives are represented in Spaces and Elements, with associated properties and values. 

Constraints are captured in relations, sets, and formulas. 

The DESERT engine converts these into internal BDD representations, and provides facilities for 
applying constraints to spaces. 
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FIGURE 6: DESERT CONSTRAINT ENGINE INPUT 

The output of DESERT is a set of configurations, which contains constrained architectures of the 
system after iterative application of system constraints. 
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FIGURE 7: DESERT TOOL OUTPUT SCHEMA 

The tool is integrated into the CyPhy editor. The figures below show an example execution of the 
DESERT tool. 

The first figure shows a set of constraints available for application. Constraints can be one of several 
types (See CyPhy Language for description of constraint models): 

 User Defined Constraints: these can be formulas, with simple operators on component 

properties (e.g., Sum on Mass) 

 Relationship Constraints: relating the selection of one option to a constraint on another. For 

example, a symmetry constraint would require left and right components to match. 

 Compatibility Constraints: automatically generated by DESERT, requiring a property on one 

side of an interface to match the other side. For example, this is used to ensure that two 

mechanical interfaces are compatible. 

 Property Constraints: automatically generated by DESERT, requires parameters of a 

component to be within the stated range of those properties.  
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FIGURE 8: EXAMPLE SYSTEM CONSTRAINTS 

These constraints can be individually selected and applied, or applied all at once. The tool allows 
constraint application to be rolled back, to support exploratory application of individual constraints 
or sets of constraints. 

 

FIGURE 9: VIEWING AND EXPORTING CONSTRAINED DESIGN SPACE CONFIGURATIONS 
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4.2 COMPOSITION OF SYSTEM MODEL ANALYSES 

The META design flow tools focus on automated composition of analyses from a common model. The 
figure below summarizes the span of analyses implemented during the META X project. The common 
model is CyPhy, developed under a parallel META X effort, which supports multi-physics, multiple 
levels of abstraction modeling of components, assemblies of components into systems, and design 
spaces of components, assemblies, and parameters. 

 

FIGURE 10: COMPOSITION OF ANALYSES SUPPORTED BY META 

META Design Flow composition paths are shown in the figure above, along with the intermediate 
representations and the external tools that are leveraged to accomplish the specific domain analysis.  

Note that one of the major objectives with META Design Flow is to build a completely Open Source 
tool flow. This goal is sometimes at odds with tool quality in terms of scalability, performance, and/or 
compatibility with the component space. For this reason, multiple similar target tools have been 
integrated to support open/free software and robust solutions. Ideally, these two coincide, or can be 
encouraged to converge with additional development. This has been the case with Modelica, in 
particular. The commercial Dymola package is often able to execute a larger fraction of the Modelica 
Standard Library and C2M2L library. The open source OpenModelica, while behind in terms of MSL 
support, is rapidly catching up, especially considering the modest resources applied under this 
contract. 
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Support for open source CAD packages has not progressed as rapidly, due to the advantage in 
required features for the FANG analyses available in PTC Creo vs. open source (e.g., OpenCascade). 
Specifically, these include constraint managers, gridding and integration support with FEA, and ability 
to export/import from other commercial packages. 

FEA packages have been integrated, with the commercial solvers supporting advanced capabilities 
such as adaptive gridding, but experiments have found good accuracy with Calculix and OpenFOAM. 

Early experiments with optimization infrastructures such as iSight and ModelCenter showed 
disadvantages in terms of openness and integration support when compared to OpenMDAO. As a 
NASA-supported tool, with a growing user base, we anticipate OpenMDAO to have a better long-term 
growth path. 

It should be noted that some of these techniques rely on other composition tools. The META Design 
Flow supports user defined series of test benches, allowing complex computations to be specified and 
executed. Arbitrary topologies of analyses can also be implemented in a PET optimization or DOE 
loop.  

4.3 TEST BENCH CONCEPTS 

The test bench concept was created for the META Design Flow project and implemented in a 
semantically well-founded manner within the CyPhy Language. In general, a Test Bench is an 
executable specification of a requirement. Test benches are used throughout the system as shown in 
the figure below.  

Test Benches in META are a reusable, succinct, complete, and executable representation of an analysis 
specification. Test Benches Contain: 

 SUT - This is a reference (link) to a design OR design space of the system or subsystem to be 

tested. The system will typically have a standard set of interfaces and parameters to allow 

different designs to be placed in the test bench for reuse of the test bench 

 Drivers and Boundary Conditions - This is the set of signals that stimulate the system to set 

conditions under which the system models will be measured, or drive the system through a 

state trajectory of interest. These drivers are Test Components, following many of the same 

semantics that are used for META components. 

 Environment Specification - This specifies any environmental conditions under which the 

system will be evaluated. 

 Metrics, Requirements, and Evaluation - These are components that process system outputs to 

compute quantities of interest (e.g., time-to-accelerate, power absorbed, average temperature, 

maximum stress. Metrics identify the quantities of interest, and requirements are the links to 

the system requirements tested by the test bench. 

 Analysis Tool Settings - These set the parameters for the analysis, such as simulation time, 

solver method, maximum time step, etc. 
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The test benches are tied to specific workflows. Currently, CyPhy/OpenMETA implements test 
benches for: 

 Dynamics - using a lumped parameter model executed in the Modelica language. Dynamics 

covers mechanical, electrical, hydraulic, and thermal domains. 

 Structural - using 3D CAD assemblies to evaluate the physical compatibility of parts, locate 

potential interferences, and compute physical properties including center of gravity, bounding 

box, and assembled location of specific points on the system. 

 Finite Element - using Finite element techniques to compute stress/strain, thermal 

propagation, computational fluid dynamics, etc. 

 Mobility - using the NATO Reference Mobility Model (NRMM) to predict vehicle mobility based 

on aggregate system properties, 

 Cyber - co-simulating dynamics with a time-based software, processor and network 

simulation. 

 Manufacturability - creating the 3D CAD file, a set of properties for each manufactured join 

between parts, and an electronic bill of materials. From this design package, iFAB can predict a 

cost and schedule to manufacture the system.  

 Complexity - evaluating the graph-energy complexity of the system based on its component 

complexity and structure of its connections. The complexity metric will correlate with system 

cost and schedule. 
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FIGURE 11: TEST BENCH APPLICATIONS WITHIN META DESIGN FLOW 

The test bench core supports an analysis topology, focusing on a System Under Test, SUT. The SUT can 
be a single design point, or more importantly, a design space. 

Test benches are used to compute specific metrics, which can be linked to system requirements. In the 
use case of FANG, these can be Key Performance Parameters (KPPs) or any other priority 
requirements. Test bench results can be visualized via the SimViz tool (described below). 

Test benches can be used in isolation, connected in a workflow a Suite of Testbenches (SOT) tool, or 
employed by the Parametric Exploration Tool and/or PCC tool under OpenMDAO. 

While all test benches follow a general pattern, test benches are customized to the analysis domain, 
supporting the analysis domain concepts and, where necessary, details of the tools. 

4.4 MULTIPLE ABSTRACTION SIMULATION CONTROLS 

As a Test Bench is created to evaluate a specific requirement, the test bench must capture the 
required physics domains and level of abstractions of a component behavior model. This capability is 
controlled via the Fidelity Selector form below.  
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FIGURE 12: SELECTION OF MODEL FIDELITY/COMPONENT ABSTRACTION 

The fidelity selector locates all components within a design which have multiple fidelity options. It 
presents the test bench designer with a form to allow selection of a component fidelity/phenomena 
representation, by component class. 

The abstraction/phenomena selection is stored with the test bench, so that all future executions of the 
test bench will be composed with the specified fidelity and resultant accuracy/phenomena. Note that 
this is supported only for the Dynamics composition, but is planned for the PDE-based analyses in a 
future version. 

4.5 DESIGN FLOW MASTER INTERPRETER 

The design flow Master Interpreter (MI) is an integration driver for all system test benches, and test 
bench suites. The MI supports the following tasks in orchestration of a test bench execution: 

 Elaboration of design space within a test bench: This effectively walks through all valid 
design points, and prepares an “Instance Model”, where design space concepts are 
replaced with specific component selections. 

 Execution of precursor interpreters, such as the Formula Evaluator, which resolves any 
mathematical dependencies between component properties and parameters or system 
parameters. 

 Preparation of results templates, where the test benches store metrics results, and various 
index files maintaining test bench status and history. 

 Preparation of any files in the execution directory, including pre/post processing of 
results. 
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FIGURE 13: OVERALL TOOL ARCHITECTURE 

4.6 DYNAMICS COMPOSITION 

Dynamics composition is a core capability of the META Design Flow tools. It is an extreme method of 
evaluating a system under a specified set of conditions. The system and specification of simulation 
conditions are defined in a test bench. An example of a dynamics test bench is shown in the figure 
below. 
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FIGURE 14: EXAMPLE DYNAMICS TEST BENCH 

The key components of the dynamics test bench are: 

 The SUT is typically at the center of the model. It describes a design or design space model, 

with any parameters that can control the system, exposed as ports for manipulation by the 

test bench or external tool. In the example above, the system under test is a 

powertrain/suspension subsystem. The mass of the other parts of the system (Hull, weapons, 

stores, etc.) are passed in as a VehicleMass parameter. 

 The scenario controls the test (in this case, max acceleration from 0 to 32 kilometers per 

hour). Driver_ScenaroD provides a simulated driver to set the target speed, control brakes, 

and control transmission mode. For any test bench, it is the responsibility of the test scenario 

to excite the system into the desired state. 

 Post-processing services monitor the outputs of the system under test and computes metrics 

from the inputs and outputs of the system. In this example, Speed Sensor Distance calculates 

the distance the system has travelled, and DriverBusBreakout extracts signals from a control 

bus. 

 Metrics are the outputs of the test bench, the purpose for executing the simulation. These can 

be tied to requirements specs, which state the threshold and objective values of the metrics. 

For FANG, the requirement management is done outside META, but the metrics are 
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coordinated: computed in META and accumulated externally in the GT/ASDL MAUF scoring 

function.  

 All limits specified in the CyPhy model are also checked as a post-processing task. Limit 

conformance or exceptions are noted in the results file. 

 

FIGURE 15: COMPOSITION OF SIMULATIONS AND CALCULATION OF METRICS 

 

4.6.1 BOND GRAPHS AND SIMULINK TARGET 

Control design involves two distinct paradigms: the discrete specification of the controller and 
continuous processes governed by the laws of physics. While a discrete controller can naturally be 
modeled as signal flows, the key to modeling physics is the use of an acausal modeling framework 
[13]. Using causal models (e.g., signal data flows) to represent interactions between components that 
share physical variables can be complex. Typically, acausal physics models have power ports, which 
represent a simultaneous, bidirectional energy exchange between components [10] [8]. A well-formed 
model in an acausal framework represents a well-formed set of dynamic equations. Acausal models 
typically must interface with causal models to represent the integration of a controller function into a 
physical system. This requires carefully directed variable sharing between cyber and physical system 
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components (e.g., through sensors and actuators). This is one of the key issues of this paper. In the 
following, we discuss the two most important acausal modeling paradigms. 

 

4.6.2 HYBRID BOND GRAPH MODELING 

Bond Graphs [8] are a physics-based, domain-independent graphical notation for describing 
the behavior of components and systems which can be modeled using differential algebraic 
equations. Bond graphs generically model the energy exchange between different types of energy 
storage and con- version components, analogously to a circuit diagram in the electrical 
domain. Bond graphs are composed of the following primitive elements: source of effort (Se), 
source of flow (Sf ), resistor (R), capacitor (C ), inertia (I ), transformer (T F ), gyrator (GY ), 
one-junction (1), and zero-junction (0). These primitive elements are connected through 
junctions, which correspond to either common flow (one-junction) or common effort (zero-
junction). For example, in electrical circuits, one-junctions (common flow) represent series 
connections and zero-junctions (common effort) represent parallel connections. The 
connections between the primitive Bond Graph elements and the junctions are called bonds, 
each of which represents an effort and a flow variable. The product of the effort and flow 
variables is the power flowing between the connected elements. 

In our previous work, we have extended Bond Graphs in multiple ways to include modulated 
elements, domain- specific power ports, and hierarchical modeling support [8]. Domain-specific 
power ports (e.g., electrical power port) connect quantities in one component with another, and 
each includes two variables: a domain specific effort (e.g., Voltage) and a domain specific flow 
(e.g. current). Power ports can be connected to either a one-junction or a zero-junction only. 
Bond Graphs easily and uniformly represent electrical, rotational, translational, thermal, and 
other types of power domains. Input signals are either control parameters (e.g., Modulate an 
effort or a flow source) or directly influence the system behavior through functions on the 
physical variables (i.e., Determine the parameter value of a modulated element). The Hybrid 
Bond Graph Language (HBGL) includes the ability to resolve causality and create a Simulink 
model from a Bond Graph model. HBGL also supports domain specific power ports for valid 
component composition. 

 

4.6.3 MODELICA TARGET 

Modelica is a modeling language for dynamic systems that is equation-based and uses signals to 

express physical constraints imposed by physical connections in the system [10] [2]. Modelica is an 

object-oriented mathematical modeling approach to systems modeling. The building blocks of the 

models are stereotyped classes, of which the most important constructs are models, blocks, and 

connectors. Models can describe hybrid models, which are composed of discrete and continuous 

variables. Blocks are similar to models with a restriction that they can only expose those connectors 

that are tagged as input or output. Connectors are ports representing causal/acausal signal 

variables. The behavior of the building blocks is defined by equations. Modelica does not strive for 

the uniformity of representation that Bond Graphs provide, but provides a library of standard 

components for each physical modeling domain called Modelica Standard Library (MSL). Also, 

Modelica simplifies connecting physical variables by its interconnection model. Interconnections 
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among components are made using connections (i.e., Connect statements) between connectors, 

which directly represent physical connections (e.g., Attaching a wire to a pin of an electronic 

device), enabling the compositional definition of system behaviors. Each connector that represents 

a physical interface has the same number of flow and potential variables. For instance, an 

electrical pin connector has voltage (potential) and current (flow) variable. For a well- formed 

model, Modelica compilers translate all of the model subsystems and connections into equations 

suitable for simulation or analysis. Unlike Bond Graphs, the Modelica language is an international 

standard that has well-supported commercial tools. Modelica is an open-source language and has 

some level of open-source compiler support as well as an open-source standard library (MSL). 

 

FIGURE 16: EXAMPLE TEST BENCH FOR DYNAMICS EVALUATION 

 

FIGURE 17: EXAMPLE DYNAMICS OUTPUT 
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4.6.4 OPENMODELICA MATURATION 

 
While the initial goal for FANG use, Dymola was the only available simulator that was capable of 
executing C2M2L models. Mid-contract, an effort was started to expand the maturation of the 

OpenModelica compiler/simulator. The full report on this effort is in the META Language report, but 
the primary accomplishments are shown here for reference: 

• Achieved simulation of more than 90 percent of MSL 3.2.1 example models. 

• Achieved flattening of whole MSL 3.2.1 library including the Fluid library. 

• Achieved simulation of more than 70 percent of the AVM test cases. 

• Achieved much more efficient simulation compared to OpenModelica 1.8.1. 

• Fluid flattening achieved.  

• More than 90 percent MSL 3.2.1 example models achieved.  

• Significantly improved simulation performance. 
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4.6.5 CYBER/CONTROLLER COMPOSITION 

The CyPhy language and design flow supports co-design of physical and controller systems. While 
controller design software is commonly available, the META design flow offers the ability to produce 
high fidelity simulations of the physical system, in addition to high-fidelity computer 
hardware/software simulations. This co-simulation allows a much higher level of developmental 
testing and software/system interaction discovery over a design-to-spec approach common in many 
software approaches. Typically, high-fidelity testing cannot occur until brassboard hardware and/or 
physical test rig is available.  

 

FIGURE 18: DESIGN FLOW FOR CYBER/CONTROLLERS 

The figure below shows the META design flow of a cyber/controller test bench. The specification of a 
controller is described in the META Design Language, consisting of state-transition diagrams for 
discrete state controllers, and a signal flow paradigm for continuous signal control (e.g., PID 
controllers). 

Cyber analysis uses the same test bench structure as a Dynamics test bench, and is invoked 
automatically for any system that contains a cyber-controller component. The design flow is shown in 
the figure above. 

Cyber models are extracted (Hybrid Dynamics Models) and synthesized into executable code. Worst 
case execution time is computed for use in scheduling and schedulability analysis.  
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Synthesized software can be integrated with a Modelica dynamics model for behavioral checkout. 
Under this mode, software timing allocations based on aggregate WCET’s and system dynamics needs 
to execute at an idealized sample rate. Under this mode, the algorithm and system dynamics can be 
tested, assuming idealized real-time scheduling and communication. 

The next level of abstraction uses the system platform model to include compute resource limitations, 
real-time scheduling effects, and communications latencies. The deeper abstractions models can be 
simulated using the TrueTime simulator coupled with Modelica dynamics model to validate behavior 
prior to a hardware build. These model are also planned to be used with verification techniques  

 

FIGURE 19: TOOL FLOW FOR CYBER ANALYSIS TEST BENCHES 

4.7 CAD COMPOSITION 

CAD composition forms a key capability in composing the 3 dimensional representation of the system 
that maintains consistency with the dynamics model. In addition, coupled with the design space 
representation and exploration, the CAD composition allows wide scale evaluation of alternative 
geometries and physical constraints on system assemblies. 

Using the CAD assembly design flows, a user can execute a CAD assembly operation and specify a 
geometric measurement set and reasoning on that geometry via a test bench. An example test bench is 
shown below.  
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FIGURE 20: EXAMPLE CAD COMPOSITION TEST BENCH 

The example test bench references a system design space as the system under test. The CAD workflow 
in the test bench specifies that a geometric assembly is required. The FANG Drivetrain is the SUT. A 
CAD Computation Block specifies geometric calculations are required, in this case bounding box 
length, width, and Height. The test bench below computes the FANG metric for Well Deck 
Transportability: 
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FIGURE 21: WELL DECK TRANSPORTABILITY REQUIREMENT EVALUATION 

As an intermediate result, the test bench generates a 3-D CAD model in a variety of formats. The 
highest level of detail and model content retention is with the ProE/Creo output options. Figure 22 
shows the resulting CAD model of the FANG seed design. 

 

FIGURE 22: CAD ASSEMBLY RESULTS 

Note that CAD composition requires all interfaces to be compatible between attached components. 
For the purposes of design space exploration, a wild-card and adapter capability was created. These 
allow a character-by-character matching relaxation, to support selective matching. The above model 
includes several adapters, (e.g., PTM to Hydraulic Pump) which appear as red cylinders. 
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The CAD composition uses CyPhy structural interfaces to associate connections. The CyPhy structural 
interfaces reference datum within the CAD file (planes, Axes, Points, Coordinate Systems). Within the 
CAD composition, algorithms are encoded to break constraint loops, detect islands, and support 
under-constrained joints. CAD tool drivers enforce constraints between these datum to enable PTC 
Creo to properly position parts and assemblies. 

4.8 FEA COMPOSITION 

FEA composition design flow is shown in the figure below. The testbench contains the system under 
test (which can be the entire system, or a part (e.g., Suspension A-Arm). For FEA, the test bench 
language allows the system under test to expose geometric handles: points, areas, and volumes. The 
test bench operators are (for structural) forcing functions and constraints. Forcing functions can be 
applied to any of the geometric handles, and can represent the force of gravity on an attachment point, 
the forces of a weapon firing, etc. Constraints also apply to the handles and will be applied at the 
physical geometry referenced by the handles. 

 

FIGURE 23: TEST BENCH CONCEPT FOR FEA 

The figure above shows a single forcing function (Yellow) applied to a surface of the A-Arm, with 3 
constraints holding the arm at its attachment points. The computation will calculate maximum shear 
stress, maximum bearing stress, maximum Von Mises stress, and apply an overall factor-of-safety to 
the assembly based on the materials properties of the component. 

The basic META Design flow is shown in the figure below. 



 

META-X Design Flow Tools: FA8650-10-C-7082 Page 32 

 

 

FIGURE 24: INFORMATION FLOW FROM FEA TEST BENCH 

The basic steps are: 

 A META CAD assembly operation occurs, using the CAD assembly tool. 

 The META Tools use the CAD tool to create a grid of the system under test. 

 Based on the test bench forcing functions and constraint locations, the grid objects are located 

geometrically by the META Tools. 

 Constraints and forcing functions are applied to the grid objects (surfaces, points). The grid 

deck is modified with these annotated objects by the META tools. 

 The FEA tool is called on the modified deck to compute stresses, and the result files are 

generated. 

 The META tools post process the results files, extracting the requested metrics. Metrics are 

stored in an AVM compatible results file. 

FEA Stress analysis has been the primary focus of the META FEA tools, and statics are the most 
developed tool. 

Thermal analysis experiments have also been done, determining the heat profile for an engine-
transmission model. 
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FIGURE 25: EXAMPLE THERMAL ANALYSIS 

4.9 STATIC CALCULATIONS WITH CYPHYPYTHON 

A python-based facility allows simple calculations to be implemented. The CyPhyPython tool allows a 
python code to traverse the model, accessing models, connections, attributes, or other parts of the 
model. These can calculate results based on the structure, or can modify the model itself. 

For FANG, test benches were implemented to calculate nominal vehicle weight, and special-purpose 
completeness metric.  

4.10 SUITE OF TEST BENCHES 

The Suite of Test Benches supports automation of composite analyses. For instance, a static test bench 
using the CyPhyPython facility calculating mass can drive the dynamics test benches for acceleration, 
speed, etc. This example is shown in the figure below. 
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4.11 EXECUTION INFRASTRUCTURE 

The META tool flow can support automatic composition of a large number of test benches, across a 
large number of design alternatives. 

While powerful, and labor saving in terms creating the executable analyses, large computational tasks 
can be created. These tasks can easily overwhelm an engineering workstation. Additionally, manually 
managing these job runs and organizing the results can be a difficult task. 

To address these needs, the Job Manager was developed. The job manager has several functions: 

 Interface with the Master Interpreter to receive tasks as they are composed. 

 Manage the tasks received, keeping track of their state and displaying that state to the user 

 Launching tasks to the compute resources 

o Local resources: starting tasks that can leverage all the processors and hyperthreads 

on the local workstation (Typical laptops can execute 8 simultaneous tasks with little 

loss in performance) 

o Remote resources:  

 negotiate with a remote job server (e.g., Jenkins META Compute service 

deployed on any compute farm or cloud),  

 create jobs and upload all necessary information required for that job, 
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 Start jobs 

 Monitor progress 

 Download job results and maintain results in the proper locations for other 

tools (Visualization and results analysis) 

 Collect and visualize the state of the job servers. 

 

FIGURE 26: META DESIGN FLOW JOB MANAGER 

The job manager UI is shown above, with a list of jobs (Green = succeeded, Blue = in progress, Red = 
Failed) 

4.12 VISUALIZATION METHODS 

As a result of the automation to analyze multiple metrics across large design spaces, a large amount of 
data can be generated across many different designs. The META dashboard has been designed and 
implemented to help understand the analysis results and the span of the design spaces. 

The full report for the dashboard is detailed in the subcontractor report from Georgia Tech ASDL. 

In summary, the dashboard consumes all the metrics from all designs and visualizes these results to 
help locate the best designs. Several key plots are supported.  
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FIGURE 27: PARALLEL AXIS PLOT, COLORS BY RANK 

The Parallel Axis Plot shows individual designs as a line that traverses horizontally across a series of 
metrics. These lines can be colorized by the weighted rank, set in another panel. 

 

FIGURE 28: PARALLEL AXIS PLOT, RED=LIMIT EXCEEDED 

The same plot can be visualized, with design axes colored Red where limits were exceeded during 
dynamics simulations 
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FIGURE 29: PAIR-SIZE METRICS PLOTS 

 

FIGURE 30: DASHBOARD VISUALIZATION OF PCC RESULTS 

4.13 COMPLEXITY METRICS 

Complexity metrics are also calculated via a test bench. The test bench is shown in Figure 31. 

Technical details for the Complexity metrics are shown in Appendix B. 
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Figure 31: Complexity Test Bench 

4.14 VERIFICATION METHODS 

The correct-by-construction of the META design process is the key to the AVM approach. Verification 
techniques are integrated with the CyPhy/OpenMETA system. Currently, the primary method is a 
simulation-based, probabilistic certificate of correctness. 
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FIGURE 31: EXAMPLE PROBABILISTIC CERTIFICATE OF CORRECTNESS 

The Probabilistic Certificate of Correctness, or PCC, is configured by the model shown in the figure 
above. The PCC model builds upon a testbench, typically of the dynamics type. The parameters of a 
test bench will map to a system variable, such as environmental or component property that has 
manufacturing variations. The PCC calculation will modify all specified parameters while doing a 
statistical analysis of input vs. output metrics. The results of all experiments can be combined to 
compute parametric sensitivities and an overall probability that system metrics will stay within the 
allowable ranges. PCC uses Monte Carlo techniques, as well as more sophisticated methods to reduce 
the required number of samples. 

A related tool, the Parametric Exploration Tool (PET), allows the designer to explore a range of 
numbers to help find acceptable values of adjustable parameters. Using Design of Experiment 
techniques, CyPhy can help to find good values of these parameters for a single architecture. 

Qualitative Reasoning 
See appendix B for QR. 
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5 RESULTS AND DISCUSSIONS 

5.1 EXECUTION THREADS FOR META DESIGN FLOW AND FANG 

META Tools form the core of activities in the FANG 1-3 competitions. The figure below shows the 
relationships between META and other AVM primary activities. 

 

FIGURE 32: META TOOL INTERACTIONS WITHIN FANG COMPETITION FLOW 

The Competitor is the focal point, and primary target for support, who executes the competition 
activities. The competitor interacts directly with two of the primary entities: 

 Vehicleforge is the host web site for secure collaboration, hosting facilities for issue reporting 

tickets (similar to TRAC/Redmine/JIRA), forums for collaboration, repositories (SVN/GIT), 

and a repository to allow searching and downloading of components. Other FANG-specific 

services include hosting a design scoring function and a gateway to the iFAB servers. VF also 

hosts cloud resource used by META compute servers. 

 META tools implement the design flow, described in the vignettes and threads below, 

providing the capabilities described in this report. 

o Via META, a designer produces designs and design spaces. These can be shared via the 

SVN/GIT repositories (hosted on VF) between team members. 
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o Via META, a designer composes analyses for execution on META compute servers 

hosted on the VF cloud, also providing access to proprietary/license-locked software 

(Dymola & ProE) and receives results. 

o Results can be visualized locally or on a META visualizer hosted on VF. 

o Results can be submitted to the scoring facility. 

o META composes queries for Manufacturability Analysis, which is serviced by the iFAB 

Foundry manufacturability analysis. 

Other Entities include: 

 C2M2L produces components for integration with META. Components flow thru curation and 

onto the VF component repository. 

 The FANG performer creates the requirements, requirement evaluation specifications, and 

seed designs, along with documentation and competition rules, guidance, and oversight. 

The role of META in FANG is described in more detail in the figure below: 

 

FIGURE 33: DETAILED META-RELATED FANG COMPETITOR ACTIVITIES 
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5.2 META TOOL CAPABILITY PLANNING VIA EXECUTION THREADS 

In preparation for the FANG competition, a set of competitor threads was created to ensure 
capabilities would be sufficient to support all design activities. The process of allocating capabilities 
with development activities is described in the figure below. 

 

FIGURE 34: CAPABILITY MAPPING PROCESS 

Vignettes were created to accomplish the main tasks that the competitors will require for the 
competition. These are broken down into individual threads that describe step-by-step tasks within 
the tools. These tasks are mapped to tools and tool capabilities. Tools and tool capabilities are 
allocated resources and assigned a schedule in the WBS. 

The individual products in this chain are also used to define and drive tutorials (Vignettes and 
threads) and testing (Threads X Tools). 

A full set of vignettes were delivered at the Preliminary Design review at Camp Pendleton. An example 
of a thread is shown below. 
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FIGURE 35: EXAMPLE THREAD DIAGRAM 
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6 CONCLUSIONS & TOOLS COMPLETED  

The following tools have been completed, delivered to several targets, and used in Beta Test and the 
FANG Competition. See the Tool Data Sheets in the attached appendix for more information on each 
tool. 

6.1 DESERT DESIGN SPACE EXPLORATION TOOL  

Integrated into the META design flow tool, supporting the full CyPhy language, with user specified 
constraints and derived constraints (e.g., component limits, structural compatibility) 

Delivered on: ALL RELEASES 

6.2 MASTER INTERPRETER TOOL 

Master interpreter manages the execution of all types of test benches across all selected 
configurations in a design space, greatly automating an analysis process. 

Delivered on: ALL RELEASES Post Aug 2012 

6.3 DESIGN SPACE ELABORATOR 

Design space elaborator converts a design space with a set of selected configurations to a set of fully 
elaborated design point models, suitable for test bench composition tools below. 

Delivered on: ALL RELEASES  

6.4 FIDELITY SELECTOR TOOL 

Fidelity Selector Tool allows specification of the fidelity/abstraction of components within a design 
space and saves settings to the testbench. It also allows configuration of fidelity/abstraction per-test 
bench. 

Delivered on:  ALL RELEASES Post December 2012 

6.5 JOB MANAGER TOOL 

The Job manager executes test benches locally and remotely, and manages result files. 

Delivered on:  ALL RELEASES Post August 2012. 

6.6 DYNAMICS COMPOSITION TOOL (CYPHY2MODELICA)/ (CYPHY2SIMULINK) 

The Dynamics Composition Tool takes a dynamics test bench with a design point system under test 
and composes a simulation job which can be executed locally or remotely. The job consists of scripts 
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to execute dymola, post-processing of results to create metrics, and general management of the job 
sequence. An earlier version created Simulink executable jobs. 

Delivered on: ALL RELEASES Post March 2012 

Uses: MODELICA (OpenModelica, Dymola) 

Deprecated (SIMULINK/STATEFLOW) 

6.7 CAD COMPOSITION TOOL 

Constructs CAD in Creo and STEP, computes geometric properties of the assembled model 

Uses: ProE/Creo 

6.8 CYBER COMPOSITION AND RUNTIME 

Constructs combined cyber controller and dynamics simulation 

Delivered: All Releases Post March 2012 

Uses: Modelica, TrueTime 

6.9 PET TOOL 

Executes parametric optimization tasks on dynamics simulation testbenches, running on OpenMDAO. 

Delivered: All Releases, Post March 2012 

Uses: OpenMDAO 

6.10 PCC TOOL 

Executes Probabilistic Certification on dynamics test benches, running on OpenMDAO. Supports 
several OSU algorithms, ranging from a general but inefficient Monte Carlo to an extremely efficient 
algorithm that computes PCC’s for systems obeying certain conditions. 

Delivered: All Releases, Post March 2012 

Uses: OpenMDAO 

6.11 COMPLEXITY TOOL - STRUCTURAL 

Computes structural complexity on CyPhy models based on graph Energy (MIT DeWeck). 

Delivered: All Releases, Post March 2012 
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6.12 COMPLEXITY TOOL - UNCERTAINTY 

Computes complexity on CyPhy models based on simulation uncertainty. (MIT – Alaire/Wilcox) 

Delivered: All Releases, Post March 2012 

6.13 COMPLETENESS TOOL 

Computes metrics associated with connecting matching structural/power ports, fully connecting 
structural supports, and minimizing adapters in a design.  

Delivered: All Releases Post Feb 2013 

Uses: CyPhyPython. 

6.14 QR COMPOSITION TOOL AND QR ENVISIONMENT RUNTIME TOOL 

QR Tools from PARC were integrated into META Design Flow for simplified component models. 

Delivered: All Releases Post Mar 2012 

Uses: PARC Quantitative Envisionment Tools. 

6.15 RA COMPOSITION AND RA RUNTIME 

RA Tools from SRI were integrated into META Design Flow for simplified component models. 

Delivered: All Releases Post Mar 2012 

Uses: SRI Relational Abstraction Tools. 

6.16 SIMVIZ 

SimViz is a collaborative visualization tool for analysis and understanding of simulation results. 

Delivered: All Releases Post Nov 2012 

6.17 DASHBOARD 

Dashboard is a design space visualization tool that portrays the range of results from multiple 
testbenches across a design space. 

Delivered: All Releases Post July 2013 

Requires: Georgia Tech/ASDL Dashboard Software 
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1. Summary 
 

The deliverables during this period consisted of a methodology for computing the Probabilistic 

Certificate of Correctness (PCC) for a given design, methods for Sensitivity Analysis (SA), and 

integration of the methods into the Vanderbilt GME tool. The deliverables are summarized as 

follows: 
 

1.1. Methods for PCC and SA 
 

Eight methods (originally written in Matlab) have been implemented in order to enable PCC and 

SA to be conducted on an arbitrary system design: Monte Carlo Simulation (MCS), Taylor 

Series Method (TSM), Most Probable Point (MPP), Full Factorial Numerical Integration (FFNI), 

and Univariate Dimension Reduction (UDR) as Uncertainty Propagation methods (for PCC 

computation), and Sobol Method (SOBOL), Fourier Amplitude Sensitivity Test (FAST), and 

Extended Fourier Amplitude Sensitivity Test (EFAST) as Sensitivity Analysis methods. Simple 

test models and results published by other researchers studying these methods were utilized to 

verify correct implementation of the methods. These methods are described in more detail in 

Section 2. 
 

1.2. Conversion to Python and Implementation as an OpenMDAO Driver 
 

The eight PCC and SA methods have been converted from Matlab to Python (2.7) in order to 

comply with the open source requirements of the project and enable integration into the 

Vanderbilt GME. Simple test models and results published by other researchers studying these 

methods were utilized to verify correct implementation of the methods. To ensure consistency 

across the entire project, as well as allow different modeling languages and/or simulation 

software to be used (Dymola), the entire module was implemented as an OpenMDAO driver. 

Georgia Tech helped in the development of a template for converting the PCC/SA code to an 

OpenMDAO driver. Thus, the verification methods themselves no longer call, for instance, 

OpenModelica; they instead rely upon OpenMDAO to facilitate communication between 
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programs. This has greatly simplified the integration with the Vanderbilt GME tool since 

OpenMDAO was already integrated with GME and thus effort to integrate the PCC/SA tools was 

greatly reduced. This also allows the PCC/SA tools to be applied to models simulated in a 

variety of software packages, such as Dymola, using the OpenMDAO wrappers. 
 

1.3. Integration with MIT Complexity Measure 
 

We have integrated the MIT complexity measure within our code (and thus within the 

OpenMDAO driver) since the MIT complexity measure also requires quantification of 

uncertainty and thus could be integrated with the PCC/SA methods. 
 

1.4. Integration with the Georgia Tech Dashboard 
 

The input/output is now integrated with the Georgia Tech Dashboard. This was enabled by 

changing the input/output format to JSON. For example, previously uncertainty distributions 

were stored in SQL database; they are now handled within the JSON format. This enables all 

input/output to be displayed in the Dashboard. More details regarding the specific inputs and 

outputs of the methods are provided in Section 3. 
 

2. Performance Verification Methodology Overview 
 

This section provides more detail on the methodology. The purpose of the Performance 

Verification module is to estimate how well a component meets a set of requirements. The 

Performance Verification does this by estimating a Probability of Correctness for the component. 
 

2.1. Probability of Correctness Computation 

For mission-critical design applications, a key consideration is the ability of the designed system 

to meet the specified performance requirements. In the META X project, the estimation of the 

PCC is enabled using methods for uncertainty propagation (UP), which is then used to verify the 

correctness of the proposed designs with respect to a set of specified requirements. In general, 

the goal of each UP method is to determine the probability that the performance function, g(x) is 

less than (or greater than) the requirement, c. This can alternately be stated as ensuring the limit 

state function z(x) is less than or equal to zero (all requirements are converted to format): 

(𝑥) ≤ 𝑐 ≡ (𝑥) − 𝑐 ≤ 0 (1) 

As seen in Eq. (1), the limit-state function is z(x) = g(x) - c. To compute the PoC, the goal is to 

estimate the multidimensional integral over the set of input variable distributions: 
 

𝑃𝑜𝐶 = ∫
Ω … ∫ 𝑓(𝑥)(𝑋)𝑑𝑥 (2) 



 

 

Where is the joint probability density function, x is the set of random inputs, and Ω= {x | z(x) 

= 0}. Because the integration cannot typically be performed analytically due to the number of 
stochastic inputs, x, the form of g(x) , or because the performance function is embedded in a 

black box simulation in which only inputs or outputs are known, numerical methods are used to 

approximate the integral. (These methods are generally classified as methods for uncertainty 

propagation.) As part of our project, we have implemented and compared six UP methods for 

PCC estimation: Monte Carlo Simulation (MCS), Taylor Series Method (TSM), Most Probable 

Point (MPP), Full Factorial Numerical Integration (FFNI), and Univariate Dimension Reduction 

(UDR). For brevity, in this report, we only provide a short summary of our study of different UP 

methods and subsequent PCC estimation. The system models are built in Modelica; however, 

because Modelica is a system modeling language as opposed to a programming language, Python 

is used to code the various UP methods. The Python scripts call the black box Modelica model 

using OpenMDAO, requiring only that the input and output variables be known from the 

Modelica model, but not the functional relationships coded in Modelica. The first step in the 

performance verification process to compute the PCC of each requirement individually (i.e., 

the marginal probability of correctness of each requirement). The second step in the 

performance verification process is to compute the joint probability of meeting the complete set 

of requirements. Note that the joint probability cannot be obtained by simply multiplying the 

two marginal probabilities. Instead, we need to compute the covariance matrix for the 

marginal probabilities. 
 

                        (3)  

If the marginal probabilities in each dimension are normal, we can use a multivariate normal 
distribution to compute the PPC. In the case in which the marginal distribution is not normal in 
each dimension, we use the Gaussian Copula function to approximate a true multivariate 
distribution. Using the Copula function, we can join different types of distributions (normal and 
beta, etc.) 

 

    (4)  
As mentioned in the previous section, the methods for UP can be classified into four broad 
categories as follows: 

 

1. Simulation-based methods such as Monte Carlo simulation (MCS). 
 

2. Local expansion-based methods like the Taylor series method (TS) or perturbation 

method. 
 

3. The most probable point (MPP)-based methods. The first-order reliability method 

(FORM) and second-order reliability methods are two popular methods in this category. 
 

4. Numerical integration-based methods, where the statistical moments are first 

calculated by direct numerical integration, and then the probability density or the tail 

region probability is approximated using an empirical distribution system based on the 

calculated moments. The two methods considered from category five in this work 

are Full Factorial Numerical Integration (FFNI) and Univariate Dimension Reduction 

(UDR). 



 

 

 

In the early phase design, MCS is used when only qualitative or hybrid qualitative-

quantitative models are available because MCS is the only method compatible with 

qualitative models. If quantitative models are available, first-order MPP is proposed at this 

stage when the number of stochastic input variables is small to moderate. If, for the 

quantitative models, the set of stochastic inputs is large, TS can be utilized, but only if the 

system can be reasonably quantified with a linear approximation at the failure surface. 
 

In later phases of design, more advance methods can be utilized. A consideration in this stage 

is the number of stochastic inputs. For a small number of inputs, the FFNI is recommended 

due to its accuracy and its ability to handle correlated inputs and interaction effects. The output 

distribution can be characterized using the Pearson system, and is therefore not limited to a 

single parametric distribution type, such as a normal distribution. For a moderate to large 

number of stochastic inputs, the UDR or second-order MPP method is recommended. 

While neither method can handle correlated inputs, the UDR method has the advantage that 

neither inputs nor outputs are required to follow a normal distribution; the second-order MPP 

method requires all inputs and outputs be normally distributed but accounts for input 

interactions better than UDR. 
 

For the final verification stage, MCS is recommended because it can handle both parametric 

and non-parametric input uncertainties and makes no assumptions on the output distribution. 

A key issue with MCS is the computation expense: it is assumed that there are very few or 

a single system design to evaluate at this phase of the design process.  A summary of the 

methods is provided in Table 1. 
 

Table 1: Summary of PoC Methods 
 

Method Scalabilit
y 

Accuracy Model 
Type 

Function 
Type 

# Inputs Input f(x) Output 
f(x) MCS  Varies Flexible Flexible High Flexible Flexible 

TS O(n) Low Quant Low Order High Normal Normal 

MPP O(n) Med Quant Low Order Med Normal Normal 

FFNI O(m^n) High Quant Flexible Low Parametric Parametri
c UDR O(n) Med Quant Flexible High Parametric Parametri
c 

 

 

In the MCS method, samples of input variables x are generated based on their probability 

density functions. The system performance function, g(x) is then evaluated at each xi sample. 

The CDF of g(x) at requirement limit, c, is estimated by the frequency of g(x) samples less 

than c. MCS is flexible for any type of input distribution and any form of model function. 

Neglecting the algorithmic error caused by simulations, if a sufficient number of 

simulations n is used, MCS results in solutions with a high accuracy. Compared with other 

numerical methods, MCS has a desirable feature that its computational cost does not 

generally depend on the dimension of the random model input variables (for a given number 

of simulations n); however, if there are rare events as a result of interactions, this may 

necessitate the use of a greater number of simulations. 
 

The Taylor Series (TS) method approximates the performance function, g(x) with a p-

order Taylor series truncation. Typically, the Taylor series is truncated at the first or second 

order terms to create first and second order Taylor Series approximation, respectively. Once 

the TS approximation of g(x) is computed, the first two moments can be computed to estimate 



 

 

the mean and variance of g(x). The first-order Taylor Series method is typically utilized for 

uncertainty propagation due to its straightforward implementation. 
 

The MPP method was originally developed in the field of reliability analysis. The MPP 

is formally defined in a coordinate system of an independent and standardized normal vector. 

The input variables x (in the original design space) are transformed into the standard normal 

space u. The MPP is defined as the shortest distance from the origin to a point on the limit-

state surface in u space. Mathematically, finding the shortest distance is a minimization 

problem with an equality constraint: The solution u of this minimization problem is called the 

most probable point (MPP). At the MPP, the joint probability density function on the 

limit-state surface has its highest value; therefore, the MPP in the standard normal space 

has the highest probability of producing the value of limit-state function z (u). The MPP is the 

point on z (u) that contributes the most to the integral for probability estimation. 

 

The FFNI method performs the numerical integration of Eq. (2) using the Gaussian 

quadrature numerical integration technique. This method is used to compute the moments of 

the g(x) output distribution, which are then used to construct a parametric distribution of the 

output to compute the PCC. With this approach, the statistical moments of the 

performance function g(x) are calculated through direct numerical integration using an 

appropriate quadrature formula. In numerical analysis, a quadrature formula is an 

approximation of the definite integral of a function, usually expressed as a weighted sum of 

function values at specified points in the domain of integration. These sampling points are 

called the nodes and the weighting factors are the weights. 
 

The UDR method is similar to the FFNI method in that it utilizes numerical integration; 

however, it approximates the multivariate function with multiple univariate functions used 

to calculate the multivariate statistical moments. This method reduces computational cost by 

approximating the performance function g(x) by a sum of univariate functions, which depend 

on only one random variable with the other variables fixed to their mean values. 
 

2.2. Hierarchal Sensitivity Analysis 
 

Global Sensitivity is a variance-based method to quantify the amount of variance that each 

input factor contributes with on the unconditional variance, V, of the output response. This 

analysis assumes a model of the form Y = f(X), where Y is the output and X = (X1, X2, …, 

Xm) are m independent input factors, each one varying as defined by a probability density 

function. Unlike conventional global sensitivity analysis, in this proposal we consider that the 

output Y is a set of n output responses Y = (Y1, Y2, …, Yn) and therefore the goal is to 

determine the amount variance and covariance each input factor contributes to the 

unconditional variance-covariance matrix, Vij, of the n output responses. The goal then of 

the analysis is a ranking of the input factors according to the amount of variance that would 

disappear, if we knew the true value of a given input factor Xi. The methods utilized for this 

analysis allow computation of contribution of both main effects, i.e., the effect of the 

individual Xi, as well as the contribution of interaction effects, i.e., Xi·Xj, Xi·Xj·Xk, etc. 
 

Three methods for global sensitivity analysis have been developed and implemented as part 

of the Meta II project. The methods are summarized in Table 2. 
 

 

 



 

 

Table 2: Summary of Sensitivity Methods 
 

Method Scalabilit
y 

Accuracy Model Type Function 
Type 

# Inputs Input f(x) Output 
f(x) Sobol'  Varies Flexible Flexible High Flexible Flexible 

FAST O(n) Med Quant Flexible High Parametric Parametric 

EFAST O(n) Med Quant Flexible Low Parametric Parametric 
 

Sobol’ introduced the first order sensitivity index by decomposing the model function f 

into summands of increasing dimensionality. The approach has been expanded by subsequent 

researchers to include computation of the total sensitivity index. The integrals utilized in the 

analysis can be computed with Monte Carlo methods. 
 

The main idea underlying the FAST method is to convert the k-dimensional integral into a 

one dimensional integral. Each uncertain input factor is related to a frequency ω and 

transformed by X(s) = Gi(sin(ωs)), where Gi is a suitably defined parametric equation which 

allows each factor to be varied in its range, as the parameter s is varied. The set {ω1,…, ωk} 

are linearly independent integer frequencies. 
 

In 1999, researchers proposed an improvement of the FAST method. They called it the 

Extended Fourier Amplitude Sensitivity Test (EFAST). With this method they could 

estimate the total effect indices, as in the Sobol method, by estimating the variance in the 

complementary set. This is done by assigning a frequency ω for the factor X (usually high) and 

almost identical frequencies to the rest ωi (usually low). 
 

The performance verification also provides the capability of hierarchical sensitivity analysis 

to decompose the complex system design into separable subsystems based on its hierarchy. A 

built- in example of ramp system can be followed for conducting hierarchical sensitivity 

analysis. 
 

3. Requirements 

3.1. Inputs (all inputs specified through the Dashboard) 
 

• System model: a black-box type of model (i.e., Modelica) which has outputs of 

system performance based on component inputs parameters. 
 

• Stochastic component input parameters: these are the list of input parameters of 

the system model to be varied and their uncertainty distributions. 
 

• Component output requirements: the list of output parameters of the system 

model and their lower and upper limits based upon a requirements document. 
 

3.2. Outputs (all inputs specified through the Dashboard) 

• Marginal PCC for each requirement 
 

• Joint PCC for the set of requirements 
 

• First Order (and optionally Total) Sensitivity of the output variance to 

input variances. 

• Graphical representation of results. 
 



 

 

3.3. Format 
 

• System model: Constructed in the Generic Modeling Environment (GME) 
 

• Stochastic component input parameters: Specified in the Parametric Exploration 

Tool in GME 
 

• Component output requirements 
 
 
 

3.4. Running Performance Verification 
 

PCC/SA can be run from within GME. See GME documentation for running PCC/SA 

from within GME. 

 
4. Limitations 

 

 

4.1. Implementation 

1. The methods have not been tested extensively on complex models (i.e., Ricardo 

Dymola Models). 

2. Distribution fitting is only based on the first four statistical 

moments. 
 

 

4.2. Method Selection 
 

It is important to use appropriate method for uncertainty analysis. The most accurate method 

in uncertainty propagation is the Monte Carlo Simulation for any system independent of its 

complexity or nonlinearity. However, the computational cost increases directly with the 

complexity, nonlinearity and the number of design variables. Therefore for extremely large 

scale and complex system often the designer have very few samples for the system. This 

limitation makes it even harder to study the behavior of the system and also in deriving 

an accurate probability of failure. There are several improvements for lowering the cost of 

MCS for more complex systems. These improvements include both importance sampling and 

also meta-models as surrogate systems to be used instead of the original systems 
 

In the local expansion based methods such as Taylor Series, perturbation, FORM and SORM 

the accuracy is highly dependent on the degree of nonlinearity of the limit state function. But 

these methods will be reliable for simpler systems with small number of design variables with 

relatively acceptable convex limit state function. 
 

The UDR and FFNI methods are appropriate when the moments of the system exist. The 

limit state functions (i.e., Modelica system model) can be nonlinear. In case of heavy tail 

phenomena, the moments do not exist for the system and it is recommended that MCS to be 

used instead. 
 

In general the appropriate method in uncertainty propagation highly depends on the dynamic 



 

 

of the system, existence of heavy tail phenomena, and the degree of nonlinearity and also 

complexity of the system. Therefore it is recommended for the designer to have an 

understanding of such concepts. 
 

5. Proposed Future Work: Tail Study 
 

Calculating the probability of failure is a challenging task in a large scale and complex system. 

It is mainly because of large number of random variables and their interactions. The 

common methods to calculate probability of failure are sampling methods (MCS), Most 

Probable Point (MPP) based methods (FORM, SORM), Taylor Series (TS) methods, Full 

Factorial Numerical Integration method (FFNI), Univariate Dimension Reduction (UDR) 

method, polynomial Chaos Expansion (PCE) method. 
 

The exhaustive Monte Carlo Simulation method is very expensive and almost impossible for 

a complex system. The rest of these methodologies are based on calculating the moments of 

the limit state function. However these moments might not exist in reality. Therefore the 

question arise how confident the results are in these methods. 
 

In order to answer this question, we focus more on the tail of the distribution of the limit 

state function. Since the probability of failure is defined as the area of the tail of the 

distribution. At first, we test if we have heavy tail phenomena at the tail. One well-known 

graphical method is using QQ-plot. In this plot, the quantiles of the limit state function is 

compared to the quantiles of the standard normal distribution. If the quantiles of the data are 

above the standard normal 

line, then the real tail is heavier than the normal distribution. However, if the quantiles are 
below the y = x line, then the standard normal tail is heavier than the real tail . 

 

Thus by using the conventional methods, we might have underestimated the probability of 

failure or also over-estimated the value for some of the design variables based on the 

analysis of their tail. It is notable to mention that for a complex system these plots are based 

on a very small sample of the limit state function. This might be the case for large scale 

and complex systems where each attempt to propagate uncertainties will be costly and almost 

impossible. 
 

We propose developing methods which quantify the tail of the output distribution and use 

this information in both the fitting of the output distribution as well as to place bounds on 

the estimated PCC. 
 

 

  



 

 

APPENDIX B: SUBCONTRACTOR FINAL REPORT –  QUALITATIVE 
SIMULATION 

 

GUIDING AND VERIFYING EARLY DESIGN USING QUALITATIVE SIMULATION 

 

ABSTRACT 

Design of a system starts with functional requirements and expected contexts of use.  Early design 
sketches   create a topology of components that a designer expects can satisfy the requirements.   
The   methodology   described   here   enables   a designer to test an early design qualitatively 
against qualitative versions of the requirements and environment.   Components can  be  specified  
with  qualitative  relations  of  the  output  to inputs,  and   one   can   create   similar   qualitative   
models   of requirements, contexts of use and the environment. No numeric parameter  values  need  
to  be  specified  to  test  a  design.  Our qualitative  approach  (QRM)  simulates  the  behavior  of   
the design, producing an envisionment (graph of qualitative states) that represents all qualitatively 
distinct behaviors of the system in  the  context  of  use.  In  this  paper,  we   show  how  the 
envisionment can be used to verify the reachability of required states, to  identify implicit  
requirements  that should  be  made explicit,   and   to    provide   guidance   for   detailed   design. 
Furthermore, we illustrate the utility of qualitative simulation in the context of a topological design 
space exploration tool.  

 

INTRODUCTION 

The field of qualitative reasoning has its roots in capturing human reasoning about the physical 
world.  Such  reasoning about the interactions of connected elements  is at the heart of an  early  
design  process,  where  a  designer  is  attempting  to achieve some desired overall  behaviors, and 
avoid unwanted interactions.  Consider the drivetrain model in Figure 1.  A qualitative analysis will 
show that it can move smoothly up through the gears, increasing speed over level terrain.   But it 
will also show that the engine may stall because of excessive load for certain combinations of 
design parameters, and driving and terrain patterns. This qualitative analysis can provide guidance 
for parameter   and   component   selection   during detailed design. By linking our qualitative 
reasoning system to a standard tool for interactive graphical design (Open Modelica, 
http://www.openmodelica.org/), we are enabling designers to use qualitative analysis as part of 
their standard work practice. 



 

 

 

FIGURE 1: MODELICA MODEL OF A VEHICLE DRIVETRAIN 

While developing models of systems with fully specified parameters, engineers frequently have to 
determine whether their numerical results conform to expected behaviors or are in fact errors in 
their modeling or simulation. This process relies on an understanding of all constraints on possible 
dynamics of the system (e.g., when the engine is running, and the vehicle is in a forward gear it 
should not go backwards, it is possible for the engine to stall, etc.).   Qualitative reasoning 
automates this form of reasoning. 

Many new designs of systems are instantiations of previous successful   designs   that   leverage   
new   components   and/or capabilities of materials. For innovative results, it is useful to explore a 
larger space of designs including new topologies of components. Doing detailed parametric design 
for each element of the space is costly; qualitative verification helps prune  the space by  efficiently  
analyzing  component  topologies  without the  need  to  specify  all  component  parameters   
needed  for numeric  simulation.  Qualitative modeling supports the rapid exploration   of   designs   
that   are   only   specified   using   the mathematical form of the relationships between a 
component’s inputs and outputs. The systems do  not need to be piece-wise linear; non-linear 
models are fine.  Given a model, qualitative simulation generates all possible behavioral trajectories 
of the system’s variables. Analyzing these trajectories can determine whether with appropriate 
parameter selection, a design could satisfy the requirements, or whether it can never fulfill certain 
requirements. 

This paper begins by introducing qualitative simulation, its representation and semantics.  We then 
discuss our   design architecture QRM and our approach to creating models.  We illustrate this using 
an example of a door system based on an infantry   fighting   vehicle,   and    highlight   how   
qualitative simulation verifies requirements and guides detailed design by identifying implicit 
failures. In a second example dealing with electric circuits, we show how qualitative simulation 
drastically prunes a design search space. We close with a discussion of related approaches, scaling 
and future work. 

 



 

 

QUALITATIVE SIMULATION 

Qualitative   simulation  [1][2][3]  or  envisioning,  is   the process of projecting forward, from an 
initial situation  and a model, all possible qualitative states that may occur. Qualitative 
representations of continuous quantities (e.g., the voltage across a diode) are central to this 
process.   In our familiar Newton- Liebnitz calculus we use variables to represent quantities that 
can take any value from the real number line, and vary with time.  Variables   can   have   arbitrarily   
many   higher-order derivatives.  Likewise, in qualitative reasoning, these variables and their 
derivatives take on values – except that the values are qualitative.  Each variable (or derivative) has 
a quantity space consisting of an ordered set of landmark values representing important points for 
understanding the behavior of the model (e.g., the turn-on voltage for a diode). A qualitative value is 
either a landmark or the open interval denoted by two adjacent landmarks. For a door, there are 
two landmark values: Closed and Open.  The  doors  position  can  be  at  one  of  these  two 
landmarks,  or  between  the  (Closed,  Open).    The qualitative value   also   has   a   direction   (a   
qualitative   derivative)   of increasing, decreasing or steady.  The most common quantity space uses 
just the sign of the real quantity.  We represent the interval x<0 as Q-, x=0 as Q0, and x>0 as Q+). 

A qualitative state is an assignment of qualitative values to variables in the model.  We represent 
equations as qualitative constraints. Consider the equation governing a resistor, V=I*R, where 
voltage, V, and current, I, are quantities and R is a fixed parameter with a positive value.  The 
resulting multiplication constraint ensures that the qualitative product of I and R is V. Because R is 
a positive constant value, if I is a negative value, then V must also   be   a negative value.  
Furthermore, their derivatives must   also match.   Figure 2 defines   qualitative addition and 
multiplication for sign values. 

 

FIGURE 2: QUALITATIVE ARITHMETIC TABLES 

One of the most significant consequents of the coarseness of  qualitative  values  is  that  variables  
may  be  qualitatively constant for long periods  of  time (perhaps  infinite).   Hence, qualitative 
simulation need only consider the instants of time at which there is a possible change in qualitative 
value,. The passage of time is represented as an alternating sequence of instants and intervals. A 
qualitative state can either describe an instant or an interval.  Qualitative simulation determines all 
trajectories through the qualitative state space from an initial state.   Given a state, qualitative 
simulation computes  possible successors  for  each  quantity  value  and  uses   constraints  to 
determine how they may be combined to  form a next, if any, state or states. The rules for 
generating successor values and directions are based on the mean value theorem from calculus [4]. 

Consider a position quantity that was between open and closed and moving toward closed.  There 
are four possible successors for this quantity. Its value may remain in the interval or reach the 



 

 

closed landmark and it may continue increasing or become steady (its derivative stays positive or 
becomes Q0). Figure 3 illustrates the qualitative integration rule for an instant to the following 
interval where are variables are continuous. 

 

FIGURE 3: CONTINUITY OF NEXT VALUES FROM AN INSTANT 

 

From basic calculus if a variable is non-zero at an instant, it will remain at that qualitative value in 
the following interval. If  the  variable  is  0,  it  will  have  the  qualitative  value  of  its derivative 
over the following interval.  There is one ambiguous case: if a variable and its derivative are both 0, 
the qualitative value on the following interval is ambiguous (but the variable and its derivative 
must be qualitative equal during the interval).  Consider x=t^2 when t=0.   The qualitative values x 
and dx/dt are both Q0, but x=Q+ on the following interval. 

 Cyber-physical systems include dynamics that are discrete as well as continuous (e.g., an input 
signal to open the door, the changing of gears in a drive train, a diode switching from off to on). We 
model such changes through modes, which include an entry condition, initial values for variables, 
and equations that are valid within that mode. During simulation, discrete changes occur at instants 
when mode entry conditions are satisfied. The initial values and equations govern the behavior of 
quantities in the   following   interval   and   subsequent   states.   Modes   are different than the 
operating regions in that they allow for the modeling of hysteresis. 

 

QUALITATIVE SIMULATION SEMANTICS 

For qualitative reasoning to be useful for verification it must have a well-defined semantics. One 
can prove a theorem: Given a qualitative model with the appropriate abstractions for the ODE’s 
used in, say Modelica, to define continuous behavior for a numeric simulation, the qualitative 
simulation will contain a path which describes the trajectory of the numeric simulation [3]. 



 

 

 

FIGURE 4: QUALITATIVE SIMULATION SEMANTICS 

 

DESIGN ARCHITECTURE 

In this section, we describe our view of an automated, or semi-automated, design process (shown in 
Figure 5).  A human designer or an automated Design Space Exploration tool starts with a high level 
functional specification of the desired system to be designed.   This search produces tentative 
topologies for analysis.  These  topologies  are  expressed  in  the  Modelica connection  language  
only   specifying  components  and  their connections; it need not contain any parameter values.  
This is illustrated more concretely in Figure 4.   This particular example is of an electric vehicle, but 
the details of the model are irrelevant here. Qualitative simulation produces envisionments from 
qualitative models (left downarrow).   An envisionment corresponds to a real system in the 
following way.  First, the qualitative models describe an infinite number of  possible  systems  (all  
possible  numerical  assignments  to parameters  as  well  as  all  possible  conventional  component 
models  which  satisfy  the  qualitative  model,  including  non- linear  ones).  Each of those systems 
will have a particular behavior (right downarrow).  Each such behavior will map to a sequence of 
qualitative states (leftarrow).   Each possible real behavior occurs in the envisionment.  Hence,  
if  a  desired behavior does not appear in an envisionment, it cannot occur in with  any  possible  
assignment  of  parameters  to  this  system. This is an extremely important property. 

One would also like the converse to be true:  that every state in the envisionment can actually occur 
in a real system. Although this property often holds, and there are complex conditions under which 
it holds. However, we cannot guarantee it in general [6].  Elimination of spurious transitions and 
states has been an active research area in the qualitative reasoning community. 



 

 

 

FIGURE 5: QRM SYSTEM ARCHITECTURE 

 

Given   the   qualitative   models   and   the   topology   the envisioner constructs the envisionment of 
the system.  The requirements (converted to qualitative terms) are evaluated against the 
envisionment.  Some requirements may be met, some may not.   If the requirements are not 
satisfied, this analysis identifies which requirements fail to be met and why. This is then presented 
to the designer or the automated Design Space Exploration tool.  If the requirements are adequately 
met, subsequent analysis selects parameter values which optimize the   requirements.  This 
optimization   may   discover   no assignment   of   values   to   parameters   meets   the   numerical 
requirements in which case this analysis will be fed back to the designer or DSE.)  This paper 
focuses on the fully implemented qualitative reasoning aspect of this process which we call the 
Qualitative Reasoning Module (QRM). 

The design space explorer uses component models from a standard library.  The  vast  majority  of  
our  qualitative  model library is obtained from Modelica models which are abstracted only  once,   
and  comprise ‘well  written’ Modelica  models abstract  directly.  More complex Modelica models 
require human intervention.  Inclusion  of  Modelica  function  blocks, algorithm  blocks  or  complex   
conditionals  are  difficult  to translate automatically.  These abstractions need be done only once 
and form the qualitative component model library. 

  

BUILDING QUALITATIVE MODELS 



 

 

Component-based   modeling   is   becoming    increasingly popular in industry (e.g., Modelica [5]) 
due to savings incurred by reusing existing models for new applications. Component modeling 
efforts take lots of resources; therefore, we align our models  as  much  as  possible  with  Modelica  
to  facilitate  our ongoing  automatic   translation  efforts.  The  composition  of models  occurs  
through  connections  that  are  domain  specific (e.g.,  electrical pin). The composition of the models 
creates additional constraints on the flow and effort variables of the models governed by 
Kirchhoff’s current and voltage laws. One area where we differ from Modelica representation 
concerns our use of modes instead of conditional equations. Modes offer the  following  advantages:  
(1)  they  localize  the  definition  of hybrid  behavior  for  the  component,  and  (2)  they  provide  a 
natural way to model various faulty behaviors. 

To illustrate our modeling approach, Figure 6 contains our definition of an ideal-diode. We present 
this here in our internal S-expression syntax which highlights this localization.  This model is a 
subclass of the electrical one port model, which defines two electrical connections, a positive pin 
and a negative pin, and variables for the current and voltage of the diode. The redefinition of the 
voltage variable v is essential to define the quantity space including Q0, representing 0V, and 
OnVoltage, representing the turn on voltage for the diode. The diode has two modes, off and on. The 
component is in a mode until the entry conditions for another mode have been satisfied, in this 
case, if the diode was off, the equation stating that no current was passing through the diode would 
be enforced. This persists until the instant when the voltage transitioned to OnVoltage, at which 
point the equation holding the voltage constant would be enforced and current would be allowed to 
flow through the diode. 

 

(defprototype ideal-diode :extends (one-port) 

:variables ((v voltage :landmarks (Q0 OnVoltage))) 

:mode (off :entry ((= i Q0)) 

:equations ((= i Q0))) 

:mode (on :entry ((= v OnVoltage)) 

:equations ((= v OnVoltage)))) 

FIGURE 6: DIODE MODEL WITH TWO MODES 

 

We have defined a standard template for expressing modes that is acceptable to current Modelica 
compilers, but do not include it here. 



 

 

 

FIGURE 7: ARCHITECTURAL OF THE DOOR SYSTEM 

QUALITATIVE SIMULATION FOR VERIFICATION 

In   addition   to   specifying   a   topology   of   connections between qualitative component models,   
it is   necessary to encode requirements in a formal language.   We work with a variety of temporal 
logic specifications [7].  While Linear Temporal Logic is common in verification, Computational 
Tree Logic is an extension of LTL that is better suited to qualitative verification of requirements 
over multi-trajectory envisionments.   Requirements   may   be   evaluated   over   an individual 
qualitative state in the envisionment (e.g., a variable should never exceed a particular level); 
requirements may also take into account a sub path of a trajectory. 

Success and failure conditions for our envisionment algorithm can terminate simulation along a 
trajectory when one of the conditions is met.  The requirement, “the door shall not overshoot the 
closed  position” a, can consider a state a failed terminal state if the door’s  position  is  below  the  
closed landmark. 

After the envisionment graph has been created, QRM provides the following analysis.  If  none  of  
the  trajectories violate requirements, then all possible numeric  values for the system  parameters  
will  satisfy  all  requirements (recall the completeness guarantee of the envisionment graph).  If 
some trajectories violate requirements and others do not, then the design may satisfy the 
requirements with appropriate constraints on parameter values.  In this case, detailed design is 
required to determine an assignment of parameter values that will satisfy the requirements.  If all 
of the trajectories violate requirements, detailed design is not necessary because no set of 
parameter values will satisfy the requirement. 

VERIFICATION EXAMPLE: VEHICLE DOOR LINKAGE 

To   illustrate   qualitative   simulation   consider   the   door system shown in Figure 7.  The 
architectural model shows quantity spaces for the positions of the piston that moves the door, and 
the door itself.  The   system   consists   of  a  PD controller, which uses position and  velocity 
sensors from the door,  a  piston,  whose  linear  motion  applies  a  torque  on  the door, and finally 



 

 

the door  slab  itself.  An input signal to the controller specifies the desired position for the  door.  In 
this case, the door has two landmarks  in  the  angular  position. 

FIGURE 8: THE ENVISIONMENT GRAPH FOR THE DOOR SYSTEM MODEL 

 

THE ENVISIONMENT COMPUTED BY QRM IS ON THE LEFT, AND A SIMPLIFIED VERSION ON THE 
RIGHT 

quantity  space,  closed  and  open,  and  the  piston  has   one landmark on the linear position 
quantity space, piston parallel, representing the position where the piston acts in parallel with the 
hinge. We will evaluate this design against the requirements that the door should always be able to 
be closed, the door’s position should operate between the door open and door closed position  
inclusively.  For  a  context   of  use,  from  an  initial situation  in  which  the  door  is  closed,  we  
will  consider  two discrete transitions: (1) the command is given to open the door, and  (2)  when  
the  door  has  reached  the  open  position,  the command will be given to close the door. 

QRM produces the envisionment  (shown in Figure 8) providing the following feedback to the 
designer. The design may reach a successful situation (shown in green). Each of the requirements 
that may be violated is shown in red. Therefore, appropriate parametric assignment will be needed 
to ensure that trajectory   for   each   failed   state   is   avoided. A   metric   for estimating how 
difficult it will be to verify the design is the ratio of successful states to terminal states, in this case 
1/3. 

Further analysis of the envisionment provides additional guidance for the detailed design. There is 
a terminal situation, 6, that does not satisfy the success or failure conditions of the system.  This 
dead-end state implies the need for additional requirements to guide the designer to avoid this 
state. In this case, this situation results from a kinematic singularity in the piston door connection. 
That is, when the acting angle of the piston is parallel to the angle of the door, the piston produces 
no torque. While this is part of the piston component model, it is  only  leads  to  a  quiescent  
(terminal)  state  if  the  door  is stationary at this point. To identify this risk requires simulating the 
system with a use case where the door first opened and then closed. This analysis happens very 
early in the design process, when alternative system topologies are being considered. In the next  
section,  we  illustrate  how  this  process  could  be  used within an automated design space 
exploration system. 

 

 

 



 

 

QUALITATIVE VERIFICATION IN TOPOLOGICAL DESIGN SPACE EXPLORATION 

Innovative design exploration searches for configurations of existing components (new topologies) 
to achieve specified functionality. Consequently, this search space is exponentially large in the 
number of components in the design. Qualitative verification prunes the design space in two ways.   
The first is use of qualitative models of components, where the component models capture only 
significantly different behaviors of the models. The second is use of a qualitative simulation to 
identify bad topologies from which no choice of parameters will satisfy the requirements, and to 
guide parameter selection in detailed design.  Qualitative simulation graphs are much smaller than 
those that explore parameter spaces.  Therefore, qualitative verification can eliminate designs for 
large parts of the parameter space. 

Consider the following example of designing a system that turns on a light after a short delay of a 
switch being flipped. If the available components include batteries, switches, resistors, capacitors, 
inductors, and diodes, the topological design space includes every configuration of these 
components. To illustrate the utility of qualitative verification, we will consider a design space 
exploration tool that searches the design space by taking one of  the  following  design  actions:  
adding  a  component  in parallel  or  series  with  an  existing  component,  removing  a component, 
or  flipping  a  component  in  the  circuit.  Figure 9 illustrates the starting design, which includes 
just a battery, switch and diode. 

 

FIGURE 9: STARTING POINT FOR TOPOLOGICAL DESIGN SPACE EXPLORATION 

After each design action, we attempt to build a qualitative model and simulation for the current 
design candidate.  Now many of these candidates are actually shorted or open circuits and QRM 
identifies them because their initial conditions are inconsistent.  If the design candidate has 
consistent initial conditions, QRM generates an envisionment and analyzes the results. Consider a 
circuit with a resistor in place of the cloud in Figure 9.  The envisionment of this will begin with 
both the switch and diode off, and has two trajectories for the instant the switch is turned on. In 
one, the diode is on, and, in the other, the diode is off. The trajectory of the actual system depends 
on the ordinal relationship between the on voltage for the diode and the battery’s voltage. Because 
neither of  these trajectories satisfies  the  requirement  that  there  exists  a delay  before  the light 
turns on, qualitative verification  eliminates this topology without   considering all possible 
combinations of battery voltages, resistances and on voltages. 



 

 

 

 

FIGURE 10: THE ENVISIONMENT ON THE RIGHT PROVES THAT THE TOPOLOGY ON THE LEFT 
CAN SATISFY THE DESIGN REQUIREMENTS 

 

Now consider the design in Figure 10. QRM produces an envisionment with two trajectories. They 
are identical in the interval after the switch is turned on, the capacitor is charging and the voltage 
across the diode is increasing.  This  interval terminates in one of two instants: (1) the current 
ceases flowing into the capacitor and the system reaches a steady state, and (2) the voltage across 
the diode reaches the  on voltage landmark causing a mode transition (shown in  magenta) 
resulting in the diode   turning   on.    This    second    trajectory   satisfies   the requirement.   
Therefore,   this   topology   is   a   candidate   for parameter selection and care should be taken that 
the battery voltage should be greater than the turn on voltage of the diode. 

SCALING 

One of the promises of Qualitative Reasoning applied to design is its performance.  By answering 
simple questions, requirements   can   be   evaluated   for   surprisingly   complex systems very 
quickly.   We draw on decades of experience on building fast qualitative envisioners.  In particular, 
we draw on advances developed in the recent DARPA Deep Green program [8]. 

Qualitative Reasoning has the advantage it only needs to address qualitative distinctions – that 
alone often   severely contracts the search space.  The complexity of QRM is not driven by the 
number of variables in the system – it is more determined by the dynamics of the system.  If the 
dynamics are simple, analysis will be simple.   We can successfully analyze systems of tens of 
thousands of variables in seconds. On the other hand, we can construct a pathological example with 
a few 

  



 

 

dozen  components  that  cannot  be  solved  (e.g.,  the  voltage across a series of unsynchronized 
oscillators). 

One important way QRM improves its performance (first developed in Deep Green) is to include 
requirement evaluation during envisioning.  If a state or a combination of states do not meet the 
requirements, QRM immediately cuts  off generation of  any  subsequent  states:  after  all  there  is  
no  necessity  to analyze   the   consequences   of   states    that    do   not   meet requirements. 

QRM also includes a qualitative solver which determines when qualitative variables are locked 
(state dependent) together and thus can be completely eliminated.   For this, it uses a form of 
qualitative algebra.   This greatly reduces the complexity of most analyses. 

 

COMPARISON TO OTHER APPROACHES 

There is a broad literature on formal verification of hybrid systems.   However, almost all 
approaches require quantitative models and numerical parameters.   Such information is often not   
available   in   early.  In   contrast   to   our   approach   of constructing   a   model   from   
components,   verification   with HybridSAL[10] begins with  a  set of equations, with numeric 
values  chosen.  HybridSAL   [10], is also limited to linear models. 

HybridSAL  has  the  advantage  of  being  able  to  answer quantitative  questions  about  a  design  
(e.g.,  will  the  vehicle reach 30 mph in 6 seconds). Answering such queries for fully specified 
designs is an important part of our future work; we believe that the QRM envisionment can 
improve the efficiency of our version of this analysis.  It is an open question what classes of non-
linear equations can be analyzed. 

Other researchers have explored the use of PRISM [9] to perform verification of cyber-physical 
systems. PRISM models have the advantage that they can consider probabilistic state transitions. 
Probabilistic state transitions make PRISM particularly useful for  verifying requirements about the 
likely reliability of  systems  given failure  rates of components (e.g., “what  is  the  probability  that  
vehicle  will  be  able  to  operate continuously  for  570  hours”).  A  challenge  for  doing   this 
analysis  is  that  there  is  no  automatic  way  to  move   from equations   specifying   components   
to   the   models   used   by PRISM. 

As we have shown in this paper, even when we know all the models and values, QRM can help 
verify requirements very quickly.   Almost all formal verification tools are very general and their 
performance scales very poorly with number of variables or components.   For more complex 
systems, QRM can verify requirements when formal methods cannot.   QRM has the advantage of 
algorithms specifically   tuned to continuous systems developed over decades in the AI community. 

 

 

DISCUSSION 

We have presented our QRM approach for early design verification using qualitative simulation. In 
particular, we have illustrated how envisionments can verify requirements and guide detailed 
design by identifying implicit requirements. Furthermore, we have shown that qualitative 



 

 

verification using QRM is able to eliminate large areas of the intractable search space of design from 
components. 

Our   initial   explorations   have   opened   a   number   of promising directions   for future work.  As   
stated   earlier, automatically incorporating available quantitative  information about  parameters  
would  allow  us  to  verify  a   large  set  of requirements.   We intend to build on existing work on 
semi- quantitative   simulation   [11]. Another    important   future direction   concerns   the   
interaction   between   design   space exploration and qualitative simulation.  In the case of design 
flaws, QRM could use the envisionment to produce diagnoses guiding topological search. In the case 
of potentially successful designs, the envisionment could provide guards, or inequalities, to guide 
parameter selection. 
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1.0 SUMMARY 

 

The primary objective of our effort is to develop a fundamental theory to quantify the inherent 

uncertainties and risks in complex system design and development processes. These theoretical 

developments will help enable the achievement of the META goal of devising, implementing, 

and demonstrating in practice a radically different approach to the design, 

integration/manufacturing, and verification of complex systems. Our approach to meeting this 

objective is: to adapt the entropy concepts of information theory to create a metric for system 

complexity; to apply estimation theory to characterize inherent uncertainty in system 

development processes; and to utilize this theoretical base to develop efficient methods for 

resource allocation so as to manage uncertainty and mitigate risk in complex system 

developments.  

 

Our specific innovative claims for this project, building on our previous DARPA META project, 

are as follows: 

 

1. Viewing system development as a problem of Bayesian estimation leads to a 

theoretical framework for complex system development. 

2. Quantifying complexity in terms of information theoretic concepts permits the 

treatment of the complexity metric with the tools of estimation theory. This enables a 

systematic approach to quantitative modeling of system development as a resource 

investment procedure in the presence of uncertainty. 

3. A stochastic model for system development facilitates quantification of the uncertainty 

reduction that is necessary for success and can be used as a tool to monitor the actual 

development process. 

4. Our proposed theoretical framework for uncertainty quantification provides the 

bedrock upon which the methods and tools, enabling orders of magnitude improvement 

in complex system developments, can be built. 

 

In this research we achieved our objectives through further development and demonstration of 

the complexity metric defined under our previous META project. This includes demonstrating 

our approach on the Vanderbilt University bond graph model of an infantry fighting vehicle, 

establishing a correspondence between complexity-based sensitivity analysis and variance-based 

sensitivity analysis for additive functions with Gaussian distributions, creating a compositional 

UQ methodology, creating an expert elicitation procedure for model discrepancy quantification, 

and creating a resource allocation methodology for redesign and refinement decisions. Some of 

the material found in this report may also be found in Ref. 40. 



 

 

2.0 INTRODUCTION 
 

Over the years, engineering systems have become increasingly complex, with astronomical 

growth in the number of components and their interactions. With this rise in complexity comes a 

host of new challenges, such as the adequacy of mathematical models to predict system behavior, 

the expense and time to conduct experimentation and testing, and the management of large, 

globally-distributed design teams. These obstacles contribute uncertainties to system design, 

which can have serious, often disastrous, implications for program outcome. A notable example 

is the Hubble Space Telescope which, when first launched, failed its resolution requirement by 

an order of magnitude. A Shuttle repair mission, costing billions of additional dollars, was 

required to remedy the problem [1]. The V-22 Osprey tilt-rotor aircraft is another example: over 

the course of its 25-year development cycle, the program was fraught with safety, reliability, and 

affordability challenges, resulting in numerous flight test crashes with concomitant loss of crew 

and passenger lives [2]. More recently, the Boeing 787 Dreamliner transport aircraft program has 

experienced a number of major prototype subsystem test failures, causing budget overruns of 

billions of dollars and service introduction delays of about three years. One major source of 

blame for Boeing's setbacks is its aggressive strategy to outsource component design and 

assembly, which created heavy program management burdens and led to unforeseen challenges 

during vehicle integration [3]. 

In these cases and numerous others, the design program was unaware of the mounting risks in 

the system, and was surprised by one or more unfortunate outcomes. Although these examples 

are extreme, they are suggestive that current system design practices are unable to recognize 

performance, cost, and schedule risks as they emerge. Such unanticipated or emergent behavior 

is often attributed to the complexity of the underlying system [4]. This has led to a desire to 

measure system complexity in a manner that will enable design trades and improve 

parameterization of cost and schedule. Thus, our objectives are to quantitatively define system 

complexity in terms of system quantities of interest and to formulate a complexity-based 

sensitivity analysis. The resulting methodology identifies the key contributors to system 

complexity and provides quantitative guidance for resource allocation decisions aimed at 

reducing system complexity. 

We define system complexity as the potential for a system to exhibit unexpected behavior in the 

quantities of interest. A background discussion on complexity metrics, uncertainty sources in 

complex systems, and related work presented in Section 3.0 We measure this complexity as the 

exponential information entropy of the probability distribution of the quantities of interest 

associated with a given system. Exponential entropy has been established by Ref. [5] as a 

rigorous measure of the extent of a probability distribution and is described in more detail in 

Section 3.0, which also includes the development of our sensitivity analysis procedure, which 

may be used to direct a design refinement process [6]. We apply our methodology to a design of 

an infantry fighting vehicle (IFV). The quantity of interest for the application is the range of the 

vehicle. The application is described in more detail in Section 4.0. A demonstration of the use of 

our methodology is presented in Section 4.0 as well, where two IFV options are considered and 

general conclusions are drawn in Section 5.0. 



 

 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

 

Complexity in system design is an elusive concept for which many definitions have been 

proposed, though none formally adopted. Early work in the field of complexity science by 

Warren Weaver posited complexity as the nebulous middle ground between order and chaos, a 

region in which problems require “dealing simultaneously with a sizeable number of factors 

which are interrelated in an organic whole” [7]. Another interpretation of this idea considers a set 

of “phase transitions” during which the fundamental features of a system undergo drastic 

changes [8]. As an illustrative example, consider the phase transitions of water [9]. On one end 

of the spectrum, water is frozen into a simple lattice of molecules whose structure and behavior 

are straightforward to understand. At the other extreme, water in gaseous form consists of 

millions of molecules vibrating at random, and the study of such a system requires methods of 

statistical mechanics or probability theory [10]. In between the two lies the complex liquid state, 

wherein water molecules behave in a manner neither orderly nor chaotic, but at once enigmatic 

and mesmerizing, which has captured the imagination of fluid dynamists past and present. 

 

Though the above example makes the idea of complexity relatable to a large audience, the debate 

over its definition still persists. However, many researchers agree that there are several properties 

that complex systems tend to share [11, 12, 13, 14, 15] (1) they consist of many parts; (2) there 

are many interactions among the parts; (3) the whole exceeds the sum of the parts, that is, the 

parts in combination produce synergistic effects that are not easily predicted and may often be 

novel, unexpected, even surprising; and (4) they are difficult to model and to understand. 

 

In addition to qualitative descriptions of complexity, there have also been many attempts to 

explain complexity using quantitative measures. These definitions can be classified into two 

general categories, structure-based metrics and process-based metrics. Structure-based metrics 

quantify the complexity associated with the physical representation of a system [16]. They 

typically involve counting strategies: in software engineering, the source lines of code (SLOC) 

can be used to describe a computer program [17]; in mechanical design, analogous measures 

include the number of parts [18], functions [19], or core technologies [20] embodied in a 

product. Though appealing, these counting metrics may be susceptible to different interpretations 

of what constitutes a distinct component - depending on the level of abstraction; a component 

may be as high-level as an entire subsystem, or as basic as the nuts and bolts holding it together. 

More sophisticated structure-based metrics also attempt to address the issue of component 

interactions through an analysis of the topology and connectivity of the system [21, 22]. For 

example, Thomas J. McCabe proposed the idea of cyclomatic complexity in software 

engineering, which uses graph theory to determine the number of control paths through a module 

[23]. Numerous others have also recommended approaches to estimate system complexity by 

characterizing the number, extent, and nature of component interactions, which govern the 

interconnectedness and solvability of the system [24, 25, 26]. Overall, structure-based 

complexity metrics are usually easy to understand and to implement, but they may not be 

meaningful except in the later stages of design, after most design decisions have been made, and 

the system is well-characterized [27]. 

 

A second class of complexity metrics quantifies system uncertainty in terms of processes 

required to realize the system. One metric in this category is algorithmic complexity, or 



 

 

Kolmogorov complexity, which measures the compactness of an algorithm needed to specify a 

particular message [28, 29, 30]. Similar definitions include the number of basic operations 

required to solve a problem (computational complexity), or the amount of effort necessary to 

design, modify, manufacture, or assemble a product [31, 32]. Another possible interpretation of 

complexity is related to the information content of a system. The concept of information entropy 

was originally proposed by Claude E. Shannon to study lossless compression schemes for 

communication systems [33]. Information entropy, or Shannon entropy, measures the uncertainty 

associated with a random variable. It also has an intuitive and appealing analogy to entropy in 

the thermodynamic sense, as a measure of a system's tendency toward disorder [34]. In this 

work, we propose a complexity metric based on exponential information entropy, which is 

described in the next section. It is important to note here that there are many different metrics of 

complexity and each can be useful in different ways and thus, all are important. 

 

We intend our complexity metric to be used in simulation-based design activities where limited 

information is known about quantities of interest relevant to the design of a complex system. 

Given our context, our metric is based on the information content in our estimates of quantities 

of interest. Thus, our metric reflects a correspondence between uncertainty in a system and the 

complexity of the system, as consistent with our complexity definition stated in Section 2. This 

correspondence does not exist for many of the other complexity metrics noted, particularly the 

structure-based metrics. 

 

3.1 Complexity Metric Theoretical Development 

In this section we define our complexity metric and develop a quantitative measure of it. We 

then develop a sensitivity analysis procedure designed to identify the key contributors to system 

complexity in an effort to identify how to best allocate resources for complexity reduction. 

3.1.1 Complexity Metric.  
We define complexity as the potential of a system to exhibit unexpected behavior in the 

quantities of interest, which are the quantities characterizing the performance, cost, schedule and 

other relevant attributes of the system. Thus, we wish to characterize the amount of knowledge 

we have with respect to our quantities of interest. To measure this amount of knowledge, or level 

of information, we define a metric of complexity based on exponential information entropy. For 

a discrete random variable   with probability mass function     , the information entropy of   

is defined as 

                                                     −∑                             (1) 

 

Where       … are values of   such that       . For a continuous random variable 𝑋 with 

probability density function𝑓  𝑥 , the differential information entropy of 𝑋 is defined as 

 

                                                 𝑋   −∫ 𝑓  𝑥    𝑓  𝑥 𝑑𝑥
 

  
,            (2) 

 

where the integrand is taken to be zero when 𝑓  𝑥     Our work here focuses on continuous 

random variables. For both the discrete and continuous case the base of the logarithm is chosen 

by the user. We will deal exclusively in this work with the natural logarithm. Thus, our 

quantitative metric of system complexity is given as 

           𝐶        {-∫ 𝑓        𝑓    𝑑 
 

  
}           (3) 



 

 

 

Where   is the random variable associated with a quantity of interest of a given system. 

 

The exponential entropy of a uniform random variable can be interpreted as the length of the 

support of the random variable (and area, volume, and hyper volume for 2, 3, and n-dimensional 

jointly distributed uniform random variables). To this end, the exponential entropy of any 

arbitrarily distributed random variable can be related to the length of the support of an 

information-entropy-equivalent uniform distribution. In this sense it has some similarities to 

Kolmogorov complexity. 
 

3.1.2 Background Material on Information Entropy. Here we present some brief background 

material on information entropy. For the discrete case, consider a random variable Y with 

probability mass function p(y). The entropy of Y is then defined as  
 

 



H(Y)   p(yi)logp(yi),
i

  (4) 

 

Where y1,y2,… are the values of y such that p(y) does not equal zero. For the continuous case, consider a 

random variable X with probability density function fX(x). The differential entropy of X is then defined as 

 

 



h(X) fX (x)log fX (x)dx,X
  (5) 

 

Where X is the support of X. Examples of the information entropy for typical distributions are as 

follows: 

 

Normal Distribution: 



h(N(, 2)) 
1

2
ln(2e 2),  (6) 

 

Uniform Distribution: 



h(U[a,b])  ln(b a), (7) 

 

Triangular Distribution: 



h(T(a,b,c))
1

2
 ln

b a

2









, (8) 

 



 

 

where  is the mean and 
2
 is the variance of the normal distribution, a is the minimum and b is the 

maximum of the uniform distribution, and a is the minimum, b is the maximum, and c is the mode of the 

triangular distribution. 

3.1.3 Complexity Estimation. Defining complexity in terms of exponential entropy implies that 

we are concerned with uncertainty associated with quantities of interest. In modeling a potential 

system, which is typically done with numerical simulation models, there are many potential 

sources of uncertainty that can impact quantities of interest, and thus system complexity. Among 

these are parametric uncertainty, parametric variability, code uncertainty, observation error, and 

model inadequacy. Following Ref. [35], parametric uncertainty refers to uncertain inputs or 

parameters of a model, parametric variability refers to uncontrolled or unspecified conditions in 

inputs or parameters, code uncertainty refers to the uncertainty associated with not knowing the 

output of a computer model given any particular configuration until the code is run, observation 

error is uncertainty associated with actual observations and measurements, and model 

inadequacy relates to the fact that no model is perfect. For the application considered here we do 

not incorporate experimental data, therefore, our focus is on parametric variability, parametric 

uncertainty, code uncertainty, and model inadequacy.  

 

A simulation model, or simulator, is a function      that maps inputs   into an output      ). 

In our work, we incorporate the presence of simulator model inadequacy by adding noise to 

simulator output. Thus, the true value of a quantity of interest that has been estimated by a 

simulator is in the form  

                                                                              ,                                                   (9) 

 

where      is additive noise that is permitted to vary throughout the input space. In the 

demonstrations provided in Section 4, we notionally account for model inadequacy by assuming 

normally distributed noise. The purpose of this is to ensure that we are taking into account some 

form of model inadequacy in the complexity estimation process and the sensitivity analysis 

methodology. However, our approach does not require that the model inadequacy term be 

normally distributed. The need to quantify model inadequacy in simulation models was 

originally addressed in Ref. [35]. More general approaches to the quantification of model 

inadequacy that incorporate both data and expert opinion is an important topic of future work. 

 

When analyzing quantities of interest with computer models, it is often necessary to approximate 

the input/output relationships of expensive simulators using less expensive surrogate models. For 

this, we employ the well-known technique of Gaussian process regression [36, 37, 38, 39]. 

Gaussian process regression is based on emulating a simulator with a stochastic process model. 

Emulating with a stochastic process ensures there is a complete statistical approximation of the 

simulator, which enables the code uncertainty associated with the use of the emulator in place of 

the simulator to be quantified. This is essential for situations where the code uncertainty of the 

emulator is a key driver of complexity.  

 

When using an emulator, the true value of a quantity of interest is in the form  

 

                                                                           ,                                        (10) 

 



 

 

Where                   ,      is the mean function of the Gaussian process        , and 

        is the covariance kernel of the Gaussian process. A Gaussian process emulator is built 

with a set of training runs of the simulation model. This training set is treated as data that are 

used to estimate the simulation model. An example of one-dimensional Gaussian process 

regression is shown graphically in Figure 36, where three data points from a simulator have been 

used as training points for the emulator.  

 

 
FIGURE 36. EXAMPLE OF GAUSSIAN PROCESS EMULATION WITH THREE TRAINING POINTS. 

 

 

The emulator itself is a stochastic process, which is represented on the figure as a mean function 

(dashed line) and plus and minus two standard deviation bounds (grayed area). The grayed area 

is a representation of the code uncertainty associated with the use of this emulator in place of the 

underlying simulator. The fitting of such an emulator is a machine learning task that involves the 

estimation of several hyperparameters. Details on how this may be accomplished can be found in 

Ref. [38].  

 

To estimate complexity with respect to a quantity of interest, we require an estimate of the 

probability density function of the quantity of interest. We estimate this using Monte Carlo 

simulation followed by kernel density estimation. We then discretize this density to estimate the 

entropy given in Equation 5. For situations where an emulator must be used in place of a 

simulator to compute quantities of interest, the complexity estimate must also account for code 

uncertainty. In this case, the procedure described in the preceding paragraph is conducted for 

each sample of the emulator stochastic process. To be conservative we take the maximum 

complexity estimate of the emulator samples as the overall complexity. 

 

3.1.3 Sensitivity Analysis. For situations where the system complexity is large, it is desirable to 

identify factors of the system, which include inputs, parameters, components, subsystems, 

simulators, and emulators that are the largest contributors to the complexity.  

Thus, we have developed a rigorous sensitivity analysis procedure for identifying the most 

significant factor contributors to the system complexity associated with the quantities of interest.  

 

The approach taken here is similar to that of variance-based sensitivity analysis as described in 

Ref. 41. In the variance-based case the goal is to apportion the variance of a quantity of interest 



 

 

among its various factor contributors. This apportionment is based on the law of total variance, 

which for a given quantity of interest   and a given factor 𝑋  is written as 

 

                                                     [     |𝑋  ]       [ |𝑋 ] .                           (11) 

 

 

From this, a main effect sensitivity index,   , for factor 𝑋  can be written as 

 

                                                                  
     [ |  ] 

      
,                                                    (12) 

  

Which is the expected fraction of the variance of   that is removed if the true value of 𝑋  was 

known. In analogous fashion, we consider the expected complexity of the system that would 

remain if the true value of some factor 𝑋  was known. This quantity is given as  [𝐶  |𝑋  ], 
where the random variable associated with the quantity of interest for the system is  . Thus, to 

identify the expected fraction of complexity that can be removed if the true value of a given 

factor 𝑋  is known, we define complexity-based sensitivity indices as 

 

                                                               
      [   |   ]

    
,                                                  (13) 

 

Where here the uncertainty associated with 𝑋  is attributable to either parametric variability or 

parametric uncertainty.  

 

The information gained from our sensitivity analysis procedure can be used as part of a resource 

allocation strategy aimed at reducing system complexity. It is important to note here that the 

system complexity we are referring to is that of our proposed definition based on the potential for 

unexpected behavior. For other definitions of system complexity different means should be taken 

for complexity reduction. For example, if structural complexity is a concern for particular design, 

increased modularity could be a viable means for complexity reduction. In this work, we deal 

exclusively with our proposed definition, and hence aim to increase knowledge of the system 

quantities of interest via identification of key sources of uncertainty in the system.  
 

4.0 RESULTS AND DISCUSSION 
 

We demonstrate the use of the complexity metric and sensitivity analysis developed in Section 

3.0 on a simulation-based design of an infantry fighting vehicle using models developed at 

Vanderbilt University. The quantity of interest for this demonstration is the range of the vehicle.  
 

4.1 IFV Simulation Emulators 

 

A single simulation of an IFV design for the range calculation takes approximately 1500 seconds 

on a standard laptop computer. The estimation of the complexity metric and the subsequent 

sensitivity analysis involves the estimation of several potentially high dimensional integrals, 

which could require thousands of function evaluations if Monte Carlo simulation is employed. 



 

 

Thus, for the IFV application, we wish to generate Gaussian process models of the candidate IFV 

design to emulate the simulation of the vehicle. The Gaussian process model of the potential IFV 

design constructed here is shown in Figure 37. The Gaussian process was trained with 20 

training points from the bond graph simulation model.  
 

 

 

 

FIGURE 37: EMULATOR OF A CANDIDATE IFV DESIGN 

4.2 IFV Sources of Uncertainty 

 

As noted previously, there are many sources of uncertainty that affect estimates of quantities of 

interest for a complex system. For the IFV range application, we are considering parametric 

uncertainty, parametric variability, code uncertainty, and model inadequacy. Thus, for the stages 

of complex system design that involve computer simulation models, we have included all 

sources of uncertainty.  

 

The parametric uncertainty we consider here is the result of an uncertain amount of trapped fuel 

that cannot be used by the IFV. The uncertainty in the amount of trapped fuel is captured by 

considering the available fuel at the beginning of the mission to be uniformly distributed from 

360 to 400 liters. Thus, we are assuming between 0 and 10% of the fuel will be unusable. In 

general, such information should be obtained from expert opinion or historical data [42]. Here 

we have assigned the distribution for demonstration purposes only. The parametric variability we 

consider here is the result of different possible human operators of the IFV driving at different 

speeds. We assume that each operator is attempting to operate the tank at 50 kph, however, each 

operator may be more or less skilled at achieving this objective. To account for this, we allow the 

target velocity of the vehicle to be uniformly distributed between 45 and 55 kph. If this 



 

 

uncertainty is found to be a major contributor to complexity, an obvious next step in the design 

process is to ensure adequate feedback information to the operator to ensure the operator is 

capable of maintaining the vehicle at the target velocity. The model inadequacy we consider here 

is assumed to be normally distributed with mean 0 and a standard deviation of 10 km. This 

uncertainty is added to the output of the emulator. We have assumed that the model inadequacy 

is constant throughout the input space. The code uncertainty we consider here is captured by the 

variability between training points in the Gaussian process model. There are of course many 

other parameters that would be uncertain at an early stage of the design of a complex vehicle 

such as the IFV considered here. However, our goal is to demonstrate our methodology rather 

than perform a complete complexity analysis of the IFV design.  

 

4.3 Complexity Estimation 

 

Following the procedure outlined in Section 3, we estimate the complexity of the IFV design. 

The result is a complexity of 104 km. Distributions of the range of the IFV is shown in Figure 

38. Here, two distributions are shown in solid black lines that were estimated using two different 

samples of the Gaussian process emulator shown in Figure 37. The dashed gray lines are the 

output distributions from the same two samples of the Gaussian process emulator, however, for 

these distributions, model inadequacy has been included. 

 

 
FIGURE 38: PROBABILITY DENSITY FUNCTIONS OF THE RANGE OF THE IFV 

 

 

 



 

 

4.4 IFV Sensitivity Analysis 

 

Following the procedure outlined in Section 3, we estimate the sensitivity indices of the average 

velocity, usable fuel, model inadequacy, and code uncertainty with respect to the quantity of 

interest, IFV range. The results of the sensitivity analysis are shown in Figure 39. As shown on 

the figure, the sensitivity indices are                                     for the 

average velocity, usable fuel, model inadequacy, and code uncertainty respectively.  

 

 

FIGURE 39: SENSITIVITY INDICES FOR IFV EXAMPLE 

 

 

 

5.0 CONCLUSION 
 

We have developed an demonstrated a methodology for estimating system complexity with 

respect to quantities of interest, as well as estimating sensitivity indices designed to indicate key 

contributors to system complexity. Our complexity metric can be used to compare and rank 

different candidate designs of complex systems with respect to quantities of interest. In situations 

where designs are too complex, our sensitivity analysis methodology can be used to identify key 

contributors to the complexity, which may then be used to inform a resource allocation process. 

The incorporation of model inadequacy in our approach ensures that complexity arising from the 

use of low fidelity models be accounted for, and provides direction, in a resource sense, for a 

multifidelity approach to complex system design. The incorporation of code uncertainty ensures 

that uncertainty associated with the use of inexpensive surrogate models be accounted for, and 



 

 

the sensitivity index associated with code uncertainty can potentially be used in the future as part 

of an adaptive approach to train the emulators. The work described here assumed the existence of 

quantified uncertainty in the form of parametric variability, parametric uncertainty, model 

inadequacy, and code uncertainty. In general, it is critical in the design of complex systems that 

these uncertainties be rigorously quantified. Systematic methods for achieving this goal are an 

important topic of future work. Once such methods exist, the use of metrics such as the 

complexity metric described here, as well as the sensitivity analysis developed here, can be used 

as part of a design verification strategy aimed at producing probabilistic certificates of 

correctness for designs through simulation. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS  

 

C (Q) complexity of a system with quantity of interest Q 
H(Y) information entropy of random variable Y 
IFV infantry fighting vehicle 
P   probability measure 
Q   quantity of interest   
T (a, b, c) triangular distribution with minimum a, maximum b, and mode c 
U [a, b] uniform distribution with minimum a, maximum b 
d   design variable vector 
h (Q) differential entropy of the distribution of the quantity of interest Q 
p(y) probability mass function of random variable Y 
y (d) true output 
z (d) model output 
F   sigma field 
  



 

 

Acronym Description 

AVM Adaptive Vehicle Make 

BDD binary decision diagram 

C2M2L Component, Context, and Manufacturing Library 

C2WT C2 Wind Tunnel 

CAD Computer Aided Design 

CyPhyML Cyber-Physical Modeling Language 

DOE Design of Experiments 

DSM Design Structure Matrix 

FANG GV Fast Adaptable Next-Generation Ground Vehicle 

FEA Finite Element Analysis 

GME Generic Modeling Environment 

HBGL Hybrid Bond Graph Language 

HDM Hybrid Dynamics Model 

iFAB Instant Foundry Adaptive through Bits  

MAUF Multi-Attribute Utility Function 

MDAO Multi-Domain Analysis and Optimization 

MI Master Interpreter 

MSL Modelica Standard Library 

NRMM NATO Reference Mobility Model 

PCC Probabilistic Certificate of Correctness 

PDE pulse detonation engine 

PET Parametric Exploration Tool 

PID proportional-integral-derivative 

PTM phonetically tied mixture 

SUT System under Test 

WBS Work Breakdown Structure  

  

  

  

 


