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1 INTRODUCTION 

The AVM META projects have developed tools for designing Cyber Physical (or Mechatronic) 
Systems. Exemplified by modern Amphibious and Ground Military Vehicles, these systems are 
increasingly complex, take much longer to design and build, and are increasingly costlier. The vision 
of the AVM program is to revolutionize the design methodology of such systems and reduce the 
design time to 1/5th of the traditional systems engineering V methodology (MIL – STD 499).  

The META tools realize this vision by advancing a novel design flow geared around the following 
core concepts: 

 Component-Based Design enables design cycle compression by reuse of existing technology 
and knowledge, encapsulated in integratable and customizable components that can be 
rapidly used in a design. Components in CPS are heterogeneous, span multiple domains 
(physical – thermal, mechanical, electrical, fluid , .. and computational – software,  
computing platforms), and require multiple models to soundly represent the behavior, 
geometry, and interfaces, at multiple levels of abstractions. The META Language allows 
creating multi-model multi-domain representation of CPS components that are composable 
by design.  

 Design Space Construction is supported by the META Language using concepts to represent 
design choices and parameterized components. These constructs in META enable a designer 
to systematically engineer a flexible and comprehensive design space for sub-systems and 
system that can be explored for satisfying product-specific requirements. The design spaces 
for subsystems and systems are assets that encapsulate design knowledge, which can be 
reused in a context different for which it was originally created.  

 Multi-Scale Design Space Exploration incorporates multiple methods that trade accuracy 
with computation time for exploring the large design spaces. A combinatorial design space 
exploration tool (DESERT), rapidly prunes design space using highly scalable constraint 
satisfaction methods over static properties of components and designs (i.e. weight, power, 
cost, …). Higher fidelity, higher computation time methods such as qualitative reasoning, 
ODE simulations, are used to further explore and reduce the design space, iteratively 
converging over to solutions of interest, given a set of requirements. 

 Testbenches for Design Evaluation capture requirements in a form that can be 
automatically evaluated for a system-under-test, using a large set of domain-specific 
analyses – ranging from hybrid dynamics simulation, software platform timing simulation, 
geometric parameter evaluation, finite element analysis, probabilistic certificate of 
correctness, qualitative simulation, among others. The model composition tools included in 
META operate over defined testbenches and synthesize artifacts necessary for executing 
analysis in domain tools such as Dymola, Pro-e/Creo, Truetime, Qualitative Envisionment, 
Abaqus, etc..  

The META design flow and tools are built around the META Language, labeled the Cyber Physical 
Modeling Language (CyPhy). CyPhy is a model integration language which integrates models from 
different domains in a semantically sound manner that enables reasoning for correctness of models 
and modeling languages. This report describes the development of the CyPhy and related 
specifications and tools under the META Language contract (FA8650-10-C-7075).  
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2 PROJECT OVERVIEW 

The charter of project, as envisioned in the proposal, was to develop a multi-modeling language 
suite for design and synthesis of Cyber Physical Systems.  

2.1 META LANGUAGE ENABLES META DESIGN FLOW 

The META design flow (separate contracted effort) articulates a design methodology and the 
associated tool flow for the CPS system design. The figure below summarizes the key elements of 
the META design flow, and motivates the key functionality that was needed in META language to 
enable the design flow. 

 

The META design flow involves three core group of activities: 

1. Initial Architecture design involves modeling and rapid Exploration of early design space 
sketched out with the system requirements. These activities in design flow require that the 
META language includes concepts for modeling system design space and constraints, enable 
representing the key architectural variants that can broadly support the customer 
requirements. The early architecture exploration also requires low compute intensity 
methods that can allow examination of lots of design options. The META language needs to 
support modeling low-resolution components to enable coarse grain exploration. 

2. The Integrated Multi-Physics and Cyber Design stage expands upon the broadly identified 
architecture, and refines them with integrated design of physical and cyber components and 
conducts relevant tradeoffs. These activities in addition to modeling of the design space and 
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constraints require dynamics modeling for progressively refined performance simulation of 
the system. This phase also requires support for computational modeling to analyze the 
behavior             and interaction of software with physical components. Geometry and 
geometry-driven analyses are central to the Physical nature of CPS, and consequently the 
modeling language suite needs to support CAD and derivative analysis such as thermal, FEA, 
and allow evaluation of designs for manufacturability. 

3. The Detailed Design stage involves further refinement, and analysis, of designs leading 
towards production, which shifts the emphasis of modeling capabilities from design space 
to domain model elaboration.  

2.2 META LANGUAGE REPRESENTS MULTI-MODEL MULTI-DOMAIN 
COMPONENTS  

In addition to the diversity of the design and modeling activities, the META Language Suite needs to 
facilitate representation of a diverse range of cyber physical components. 

 

The components that constitute a typical cyber physical system such as a military ground vehicle 
span a broad range from commodity physical components such as nuts and bolts, to large complex 
dynamical components like Engines, Transmissions, Sensors, Actuators, and Controllers. These 
components can generally be categorized as:  

1. Physical – components consist purely of electro-hydro-mechanical elements with little or no 
programmability. Examples of such components include transmissions, differentials, gears, 
clutches, starter-generators, servos, among others. These can be further categorized as: 
functional – implementing a function in the design, or interconnect – that act as facilitator 
for physical energy flow or provide linkages such as nuts, bolts, pipes, and tubes. 
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2. Cyber – components are software components that require a computer processor to run, 
and implement some function such as the Vehicle Management Software, or controller 
algorithms implemented in software 

3. Cyber-Physical – components cross-cut cyber and physical domains, such that they are 
physical and implement some function, however, contain deeply embedded computing and 
communication functions that enable configuration and control of the designed function. 
Modern combustion engines are a good example of cyber-physical components, in that 
they include programmable controllers that will interface with rest of the vehicle 
management system over communication buses (such as CAN and TT/FlexRay), and allow 
optimizing torque delivery by controlling air/fuel mixture and valve timing for optimal 
combustion.  

The examples depicted above also illustrate the fact that META components span across different 
energy and physics domains. A combustion engine, for example, turns chemical energy into 
rotational mechanical energy, a battery delivers electrical energy from stored chemical energy,  
while an integrated starter generator (ISG) delivers mechanical rotational energy from electrical 
energy. 

Moreover, the components depicted in figure require multiple models to describe and analyze their 
behavior. A combustion engine has a CAD model which represents the physical geometry including 
mass distribution, center-of-gravity, a dynamics model will describe the performance of the engine 
as a function of the driver and torque demand, a thermal model will describes heat generation, 
distribution, and dissipation as a function of the driver and torque demand. 

Furthermore, these different models are often developed in different domain tools i.e. ProE/CREO 
or SolidWorks tools are used for CAD modeling, while Dymola and Simulink might be used for 
modeling dynamics. Often these models constitute an asset base of different engineering 
organizations, and have been developed with significant time and resource investment. 

These motivating and constraining factors had a strong impact on the design of the META 
Language. The META Language had to be designed to represent components that are 
“Heterogeneous, Multi-Physics, and Multi-Model”, in such a way that it could leverage and integrate 
existing model assets in domain tools. 

2.3 META LANGUAGE IS A MODEL INTEGRATION LANGUAGE 

The consequence of these factors was that we developed the META Language that we call CyPhy as 
a Model Integration Language. A Model Integration Language is a thin layer wrapping language that 
wraps the domain models and exports only the key interface and parameters that are relevant for 
integration. The wrapping maintains the link to the domain model – to allow integration in the 
domain tool. The integration language has a very small set of native modeling constructs by design. 
The native construction includes concepts such as hierarchical ported modules and interconnects, 
structured design spaces, and includes a variety of meta-model composition operators which 
enables systematic integration across different domain modeling languages.  

 



Multi-Model Language for Cyber Physical Systems: FA8650-10-C-7075 Page 8 

 

 

The integration is done in a manner that abstracts the key properties and interfaces from the 
domain models that are relevant for integration across domains. These constitute the key 
variabilities, or design parameters that must be reasoned about in a multi-domain context. For 
example, when modeling system architecture the detailed and exact geometry may not be 
important, however, the key concepts of relevance are the join interfaces, surfaces and constraint 
with which components must be physically attached to each other.  A systematic linkage of the 
abstractions and modeling concepts, automatically enables the projection from architecture models 
back into the domain models.  

The Domain Tools and Frameworks depicted in the figure above are rich engineering 
infrastructures that were developed with significant investment, and have accumulated a large 
volume of Design Assets, Intellectual Property, Designer Expertise. The Model Integration Language 
approach enables reuse of these assets in the form of a META Component Library, and when 
systems are built using the components, the Model Integration Language approach allows to project 
the integrated models back into to the Domain Tools and Frameworks to analyze, visualize and 
refine the design. 

A model integration language approach also allows to opportunistically link and add new design 
languages on demand, enabling an open language framework, that allows to adapt languges to 
accomodate evolving needs of design flows. 

2.4 META LANGUAGE COMPOSITIONAL SEMANTICS  

A major challenge in realizing a model integration approach, relates to the heterogeneous 
semantics of the modeling languages integrated together. The project address this challenge by 
formally specifying the semantics of the integrated domain languages, as well as formally specifying 
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the composition semantics. The figure below illustrates the compositional semantics of integrated 
the Dynamics Modeling Language with the Architecture Modeling Language 

 

The figure depicts a subset of the metamodel (metamodels are definition of modeling languages 
using a UML class diagram notation) of the Architecture Modeling Language (AML). The figure also 
shows a subset of the Bond Graph language, which is a multi-physics modeling language. The 
complete Bond Graph language is pretty large and complex, however, for integration with 
architecture language the core concepts that are relevant for integration are abstracted out. The 
PhysicalComponent is a term in Bond Graph notation referring to a component, and PowerPort are 
the interface of BondGraph components. In the integration language the composition is 
accomplished as follows: 

   a) a PowerPortType is defined in the AML, and is inherited from the Port concept in the AML. This 
allows for creation of power ports in architecture component model, and 

   b) a containment relation is established between the AML Components and Bond Graph 
components, which allows embedding Bond Graph components in architecture components, and  

   c) the PowerPort of Bond Graph is linked with PowerPortType in AML 

However, while this enables drawing Bond Graphs within Architecture model, several crucial 
question remains regarding the semantics and well-formedness of compositions. In the META 
language project these questions are addressed by use of FORMULA, a constraint logic 
programming environment, developed at Microsoft Research. The FORMULA tool allows 
specification and reasoning over well formedness of domain composition. 
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3 RESULTS  

3.1 META SEMANTIC BACKPLANE 

The Semantic Backplane includes modeling languages, models and tools for the semantic 
integration of Domain Specific Tool Chain (DSTC) configurations. The semantic integration is 
performed by 

1. Metamodeling - defining structural and behavioral semantics of domain specific modeling 
languages  

2. Metamodel Analysis and Verification - composing and relating DSTC-level domain specific 
modeling languages) and  

3. Metagenerators  - automatically generating model translators from formal  specification of 
relationship between modeling languages.  

 

Figure 1: Semantic Backplane Overview 
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Tools and methods developed for the Semantic Backplane are not targeting the general engineering 
users: these are for a relatively small group of specialized experts responsible for the semantic 
integrity of the evolving domain specific tool chains. 

An essential element of the Vanderbilt MIC tool suite is that most of the Semantic Backplane tools 
are “metaprogrammable” and used both in the Semantic Backplain and DSTC  levels. In the 
followings we summarize the delivered components. 

Metamodeling provides the formal specification of the semantics of the META modeling language 
suite.   

3.1.1 METAMODELING LANGUAGES 

1. MetaGME++: the mature MIC metamodeling language MetaGME (a variant of UML class 
diagrams and OCL) extended with generative constructs. MetaGME++ is used as 
metamodeling language for all  MIC metaprogrammable tools. It has well established 
relationship with various standards, such as MOF, EMF, OWL and others.   

2. FORMULA: constraint logic programming language developed by Microsoft Research. 
FORMULA is used as formal language for defining the structural semantics of MetaGME++ 
and domain specific modeling languages defined using MetaGME++.  (MSR and Vanderbilt 
ISIS collaborates in evolving FORMULA;  e.g. current work expands the logic used  in 
FORMULA with metric first order linear temporal logic). 

3. ASML: a language variant for the Abstract State Machine (ASM) formal framework. We use 
ASMs  as  common semantic domain for specifying discrete behavioral  semantics of 
modeling languages. ASML was selected because of its availability  in the Visual Studio tool 
suite. (We expect that in the future we migrate to  FORMULA as the supporting theory 
evolves). ASML-based behavioral semantics are operational specifications  (as opposed to 
denotational), therefore they are executable and suitable for generating reference traces. 

4.  DE: lumped parameter differential equations as a common denotational semantic domain 
for a wide range of continuous time dynamics. We use a syntactic form that can be easily 
transformed. DE’s provide a bridge towards symbolic mathematics tools developed for 
order reduction. The provided semantics for continuous dynamics  is independent from 
simulation algorithms. 

The metamodeling languages listed above are part of the deliverables. We expect that the 
metamodeling languages will continue to evolve beyond this project as an overall consolidation in 
the practical use cases for semantics. We are also investigating interesting other alternatives such 
as BIP (developed by Joseph Sifakis – 2008 Turing Award Laurate) for capturing interaction 
semantics among cyber components. 

3.1.2 METAMODELS 

Metamodels are models of domain specific modeling languages  described using  metamodeling 
languages. Their goal is to capture the formal structural and behavioral semantics of modeling 
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languages. The Semantic Backplane includes the CyPhy Metamodel Library that integrates semantic 
aspects of a given configuration of the META DSTC. 

Being a model integration language, CyPhy includes a core set of language constructs for model and 
design space integration as well as an evolving suite of abstracted (sub)languages imported from 
various META tools. The abstracted sublanguages are the simplest possible  well-formed subsets of 
the domain specific modeling languages of constituent META tools – still sufficient for  capturing 
cross-domain interactions (structural and behavioral).  Abstracting sublanguages for multi-model 
integration from bloated and complex domain languages is an important step toward making META 
DSTC-s practical. 

At this point, the CyPhy Metamodel Library  includes metamodels for the following sublanguages: 

1. ADML (Architecture Design Modeling Language): represents hierarchical component 
architectures and typed interfaces. Precise relationship is being defined between ADML and 
component modeling sublanguages of various standards or frequently used modeling 
languages, such as SySML (in progress), AADL (planned) and SL/SF. This relationship is 
defined as model transformation in GReAT (the MIC tool suite graph model transformation 
specification language) – and in some cases in FORMULA. 

2. ADSML (Architecture Design Space Modeling Language): extends the design modeling 
languages with constructs for design space modeling, allowing traditional design languages 
to capture design spaces instead of just point designs. The extensions come in the form of 
introducing design containers with model structure variability such as Alternatives, 
Optional, and variable cardinality containment, as well as Parameterization of design 
elements. Introduction of these design space extensions at all levels within the design 
hierarchy provides a powerful and compact mechanism of representing very large design 
spaces. 

3. (Extended) BGML (Bond Graph Modeling Language): is a multi-(energy/physics) domain 
formalism for representing lumped parameter dynamics of physical systems. A Bond Graph 
represents energy flow across systems in an energy domain neutral manner. Hybrid Bond 
Graphs are also able to represent hybrid dynamics with the aid of switched junctions, and 
support derivation of causality relation across systems. 

Beyond the core model and design space integration language elements, CyPhy has been 
complemented with the following abstracted sublanguages imported from integrated tools: 

1. Simulink/Stateflow Interface Language: The cyber aspects, specifically the controller design, 
are captured using Simulink/Stateflow models. The CyPhy metamodel integrates an 
abstracted Simulink/Stateflow metamodel, capturing the input, output, and parametric 
interface of Simulink models and defines associations with CyPhy components and 
component interfaces. 

2. Embedded Systems Modeling Interface Language (ESMoL): The ESMoL language defines 
software components, computation and communication platform, and allocation of software 
components on platform. CyPhy metamodel defines the relation of software components 
with CyPhy components and allows defining the sensing, actuation, and control path by 
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specifying associations between energy interface of physical components, sensors and 
actuators with data interface of software components.  

3. CAD Constraint ML: represents geometrical constraints (axial alignment, surface placement,  
between CAD components (linked into CyPhy components) and allow derivation of CAD 
assemblies with a network of geometric constraints 

4. Manufacturing (Cost) ML: represents manufacturing cost drivers for buy and make parts. 
These drivers include factors such as parts types, complexity, and counts, join types, 
complexity, and counts for part assemblies. The Manufacturing ML is integrated within 
CyPhyML allowing associating manufacturing cost parameters with CyPhy components.  

5. Hydraulics ML (in progress): is an abstraction of hydraulics systems modeling primitives as 
used for modeling Hydraulic systems in COTS tools (Boeing ICCA). These abstractions are 
being linked into the Fluid aspect of the CyPhy component model. 

 

The metamodels above are represented in MetaGME++ and translated for verification and 
validation to FORMULA. (We do not expect the verification step fully completed by the end of 
September. Rather, we expect that the CyPhy Metamodel  Library will continue evolving during the 
tool maturation period and beyond following the evolution of the META tool chain.) 

 

3.1.3 METAMODELING TOOLS 

1. Generic Modeling Environment (GME):  Vanderbilt’s metaprogrammable modeling tool is the 
modeling environment for MetaGME++. Except the newly implemented support for the 
generative extension of MetaGME, the tool is mature and has been tested in major academic 
and industrial projects. GME is open source and distributed for research as well as 
commercial use.  

2. Unified Data Model (UDM): is a metaprogrammable API tool that provides API-s to 
programmatically manipulate domain-specific models built using GME (persisted in GME’s 
native format or conformant XML). UDM is open source, has multiple programming 
language support (Java, C++, .net, Python), is mature and tested in various academic and 
industrial projects. 

3. GReAT: is a Graphical modeling environment (and associated toolset) for formally defining 
(modeling) Model Transformations as Graph Rewriting specification over Domain Meta 
Models. The model transformations defined with GReAT can be interpretively executed for 
rapid prototyping, or compiled into executable specifications for performance. The formal 
definition provides opportunities for verifying the transformation, and allows for 
systematic evolution of the model transformation as the domain metamodels evolve. 

3.2 CYBER PHYSICAL MODELING LANGUAGE (CYPHY) 
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The CyPhy Modeling Language is defined using MetaModels (described earlier). The CyPhy 
Metamodel is delivered as a deliverable of this project. This section documents the core concepts of 
CyPhy using sections of CyPhy metamodels. 

3.2.1 COMPONENTS 

Components in Cyphy are the basic units for composing system design. Components are self-
contained models representing a physical or software part of the system.  As an atomic component, 
they are not intended to be further subdivided at the level of representation in CyPhy, but can be 
used as a standalone part.  

 

FIGURE 1: EXAMPLE COMPONENT MODEL 

The component model represents several things about the actual component, including its physical 
representations and connections, its dynamic behavior, and numerical properties.  The component 
in figure 1 shows several connections for structurally connecting (Threaded Pin & Hole), 
dynamically connecting (flange_a/b), and parameters (Damping Constant,...).  These aspects are: 

 

FIGURE 2: PHYSICAL – INSIDE THE STRUCTURAL ASPECT 

- Physical implementation: The component will have a 3D shape, and various physical 

properties, such as mass, center of gravity, 3D geometry(CAD).  As the components will be 

interconnected into assemblies, subsystems and systems, the interfaces are carefully defined 

to permit composition of models.  The physical properties of the model are shown in the 

Structural Aspect of the model.   

- Dynamics: The component will have behaviors one or more domains (e.g. Electrical, 

Thermal, Mechanical-Rotational, Mechanical-Translational, Hydraulic, etc.  Dynamics is 

expressed in the Modelica language, which uses a mix of Causal (directional input or output 

is assigned to each port) and Acausal (power flows either direction based on its context, as 

in most physical systems). 

- Cyber:  The software is a critical part of the cyber-physical system design, with many 

components having a physical, dynamic, and software implementation.  The Cyber aspect 

captures the software representation.   The Cyber aspect is intended primarily for 

specifying controller logic for the system.  Controllers can be specified in a combination of 

state diagrams and signal flow.  Software is automatically generated from these models.  
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FIGURE 3: EXAMPLE DYNAMICS MODEL 

In summary, components are multi-domain and multi-model, include interfaces for composition, 
have properties for informational and analytical evaluation, and can be parameterized. 

3.2.2 DESIGN SPACES  

Using components and assemblies allows the designer to capture a single design architecture, with 
a single choice of components.  This has several drawbacks: 

 Requirements often change during the design process, sometimes necessitating a redesign. 

 Component and subsystem behavior is discovered during the design process, and the best 

choice of architecture and components  may not be apparent until late in the design process. 

 The design is applicable to a single target use, and can require substantial rework for other 

applications. 

Instead, CyPhy/OpenMETA offers  the concept of a Design Space.  The design space allows the 
models to contain multiple alternatives for components and assemblies.  Any component or 
assembly can be substituted for another component or assembly with the same interface. 

The editor offers a simple syntax for capturing design options.  A design alternative container is 
created with an interface matching a component and the component is placed inside and wired to 
the external interfaces (there is a tool to automatically do this).  Additional alternative components 
(or assemblies) are added to the alternative design container. 

The semantics of this construct are to choose one of the internal components in place of the 
alternative container.   

The design space is the combination of all options of all alternatives.  Consequently, the design 
space can get very large (i.e. Design space size is # Alt1 * # Alt2 * # Alt3 *...).  While this is a 
powerful mechanism to expand the range of designs under consideration, a mechanism is needed to 
limit the design space to a manageable size.  For this purpose, design space constraints can be 
specified, and used by the DEsign Space ExploRation Tool (DESERT). 
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FIGURE 4: EXAMPLE DESIGN SPACE ALTERNATIVE 

 

Design space constraints are simple, static operations/equations that can be specified on the 
properties or identities of components or assemblies in the design alternative space.  Operations on 
the properties such as total weight and cost, thresholds on a component property (e.g. TRL > 3), or 
identity (e.g. All wheel types must match – do not mix and match) 

 

FIGURE 5: EXAMPLE CONSTRAINTS 

The DESERT Tool uses scalable techniques to apply these constraints to very large design spaces to 
rapidly prune the design space to a manageable size.  The figure below shows the design space for 
the simple drivetrain.  Prior to applying constraints, there are 288 configurations.  After, there are 
48.  Typical design spaces can easily reach 10B configurations. After proper constraint application, 
these can be reduced to 1000’s. 
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FIGURE 6: DESIGN SPACE EXPLORATION.  BEFORE AND AFTER CONSTRAINT APPLICATION 

Design space creation and exploration is a process of expansion and contraction of the design space.  
It can be a powerful tool to build adaptable, flexible designs. 

3.2.3 DESIGN EVALUATION (TESTBENCH) 

While application of constraints can eliminate design alternatives based on simple, static 
properties, much of the system behavior (desirable and undesirable) emerges from the dynamic 
interaction between components.  These interactions occur across and between any and all of the 
physical domains within the spectrum of the model coverage. 

Evaluation of a model configuration can be done vs. requirements imposed on a system design.  
Requirements are expressed in terms of Metrics that can be computed on the system models  
Examples of metrics include Speed, Maximum Towing Force, Acceleration time from 0 to 60 
MPH, etc.  Requirements are tests on tests on these metrics, e.g.” The vehicle must accelerate from 
0 to 60 MPH in less than 8 Seconds”  .  Typically, the conditions and scenario will be specified for a 
requirement CyPhy support, e.g. Level ground, Pavement, and the scenario of Driver Throttle at 
100%. 

System performance evaluation is specified via a Test Bench.  A test bench is an executable 
specification of a requirement analysis.  The parts of a Test Bench are: 

 Test Drivers, reproducing the stimulus to the system 

 Wraparound environment, providing the interfaces at the periphery of the system (e.g. the 

ground interface with the tires, the external air, ...) 

 Metrics evaluation, taking measurements of the system properties and converting into a 

value of interest.  The metrics are also tied to requirements, which can convert the metric to 

a design “score”. And, 

 The system under test – either a point design or a design space.  In the case of a design 

space, the test bench can be applied over the entire set of feasible designs. 
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FIGURE 7: EXAMPLE TEST BENCH 

The test benches are tied to specific workflows.  Currently, CyPhy/OpenMETA implements test 
benches for: 

 Dynamics, using a lumped parameter model executed in the Modelica language.  Dynamics 

cover mechanical, electrical, hydraulic, and thermal domains. 

 Structural, using 3D CAD assemblies to evaluate the physical compatibility of parts, locate 

potential interference, and compute physical properties such as Center of Gravity,  

Bounding Box, and assembled location of specific points on the system. 

 Finite Element, using Finite element techniques to compute stress/strain, thermal 

propagation, computational fluid dynamics, etc. 

 Mobility, using the NATO Reference Mobility Model to predict vehicle mobility based on 

aggregate system properties, 

 Cyber, co-simulating dynamics with a time-based software/processor/network simulation. 

 Manufacturability, creating the 3D CAD file, a set of properties of each manufactured join 

between parts, and an electronic Bill of Materials. From this design package, iFAB can 

predict a cost and schedule to manufacture the system.  

 Complexity, evaluating the graph-energy complexity of the system based on its component 

complexity and structure of its connections.  The complexity metric will correlate with 

system cost and schedule. 

Test benches also have a set of limits associated with part minimum/maximum parameters, (such 
as maximum torques on a drive shaft), design limits associated with an assembly or the use of a 
part in a system (such as minimum allowed battery charge).  The limits are automatically evaluated  
with each evaluation of a test bench.  If limits are exceeded, a test bench result can be ignored or 
otherwise modified or treated with less trust. 
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3.2.4 CYPHY LANGUAGE FORMAL DOCUMENTATION 

Included with the package as zipped html files 
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3.2.5 CYPHY LANGUAGE REFERENCE DOCUMENTATION 

Included with the package as zipped html files 
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3.3 AVM COMPONENT AND DESIGN INTERCHANGE FORMAT (SPEC 
DOCUMENTATION) 
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See Appendix
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3.4 QUALITATIVE REASONING AND ENVISIONMENT (SUBCONTRACTOR FINAL 
REPORT) 
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See Appendix.
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3.5 RELATIONAL ABSTRACTION AND SAFETY PROPERTY VERIFICATION WITH 
HYBRIDSAL (SUBCONTRACTOR FINAL REPORT) 
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See Appendix.
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5 APPENDIX 1: A MULTI-MODELING LANGUAGE SUITE FOR CYBER 
PHYSICAL SYSTEMS 

jscott
Text Box
See MPM10_v3.pdf as part of a provided zip file.
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6 APPENDIX 2: TOWARDS AUTOMATED EVALUATION OF VEHICLE 
DYNAMICS IN SYSTEM-LEVEL DESIGN 

jscott
Text Box
See dynamics.pdf as part of a provided zip file.
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7 APPENDIX 3: TOWARDS AUTOMATED EXPLORATION AND 
ASSEMBLY OF VEHICLE DESIGN MODELS 

jscott
Text Box
See cad_dse.pdf as part of a provided zip file.
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8 APPENDIX 4: FOUNDATION FOR MODEL INTEGRATION: 
SEMANTIC BACKPLANE 
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See DETC2012-70534.pdf as part of a provided zip file.
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1 Overview

In the context of the AVM program, an AVM Component is a well-defined,
self-contained, real-world entity that can be used in a design. The AVM Com-
ponent Model captures metadata and data about the entity.

From a system designer’s perspective, it is a ”black box,” below which the
designer does not need composition details. It contains a number of Features,
which can include numerical properties, links to detailed CAD and behavior
models, and fabrication instructions. It also contains a number of Associations
to relate these instantiated features or sub-parts of these features.

AVM Components are distributed and managed via the VehicleForge Com-
ponent Exchange.

2 Implementation

An AVM Component Model serves several purposes:

• Serve as a manifest for the Component package

• Define the interfaces and properties of the component

• Serve as a wrapper for integrating various domain models of the compo-
nent and using them in composing system models

2.1 File Format

AVM Component models are stored in JavaScript Object Notation (JSON). A
JSONSchema enforces the syntax of the spec.

2.1.1 Schema

AVM Component Schema.json enforces the syntax of a JSON Component Model
by checking the root node, Features, Associations, and File objects for the fields
required by each.
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The schema does not check the completeness or well-formedness of elements
deried from the AVM Core Type Libraries, beyond verifying that they meet the
requirements of Features.

2.2 Component Package

A full AVM Component ”package” may include:

• AVM Component definition in JSON, conforming to this spec (required)

• Files required for using the component in analysis and simulation, such
as:

CAD files

Modelica files

Simulink files

• Additional materials such as:

photos

diagrams

documentation

2.3 Software Library

The AVM Component model is also supported by a software library that can
parse, validate, and export AVM Component models. This library also exposes
function calls useful for reading and manipulating an AVM Component model.
The library is implemented in C# and can be used within Microsoft’s .NET
framework.

A Python implementation is planned.

The provided software library also includes classes for handling types from the
AVM Core Type Libraries, which are documented separately.

2.4 Features and Types

An AVM Component model consists of Features, which are instances of Types,
which are taken from a set of core vocabularies defined by the program. One
such vocabulary is the META Core Type Library.

The core types in each vocabulary can be extended to produce more strongly-
typed Types, such as using the AVM.META.NamedValue type to define a
specific concept of Weight. Using this strong type, the many components using
Weight can be understood to be using the same concept, beyond matching
name strings. These core and extended type libraries are hosted and edited on
VehicleForge.
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2.4.1 Types

All Types in core and extended AVM vocabularies must inherit from AVM.Base,
depicted in the ClassDiagram.

2.4.2 Non-AVM Types

An AVM Component model may also include, as features, types not specified
in the core or extended type libraries. However, these features may not be read
by the Software Library, and won’t necessarily have a common meaning across
the tools of the AVM program.

3 Classes

This section includes descriptions of the classes used in the AVM Component
spec, along with their attributes. Custom data types and enumerations are
documented in Section 4: Type Definitions.

3.1 ClassDiagram

3.2 Component

Component is the root element of an AVM Component definition. An Com-
ponent contains any number of Features and Associations.
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Attribute Type Required Description
Description String no A description of the component.
AVMID AVMID no An ID unique across all components

used in the AVM program.
Name String yes The name of the component.

3.2.1 Feature

A Feature is a piece of data associated with a component. All core and extended
types in the AVM program vocabularies derive from this class. Inherits from
Associable.

Attribute Type Required Description
Type TypeRef yes The type of the feature.

3.2.2 Associable

An abstract basesclass for elements which can be the targets of Associations.
All Features are Associable, and sub-parts of Features may also be associable.
Associable sub-parts of core and extended types derive from this class.

3.2.3 Association

An Association defines a directional relation between two associable objects.
The semantics of this association are determined by the types of the features
involved. These semantics are provided in the core type libraries.

Attribute Type Required Description
Note String no A note describing the association.

3.2.4 Base

An abstract baseclass from which all core types derive, such as those in the
AVM Core Type Libraries.

Attribute Type Description
Description String A description of the type.
Name String The name of the type.

3.2.5 File

Describes a file that is distributed as part of the Component package. This sup-
ports the Component Model’s role as a Manifest for the full Component package.
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Attribute Type Description
Description String A description of the file.
Hash HashType A hash of the file (optional).
Location Path The path of the file.

4 Type Definitions

Custom data types and enumerations used by the spec are defined in this section.

4.1 TypeRef

Types are identified using dot notation incorporating the namespace of the type.
For example, NamedValue in the META Core Type Library is indicated with
AVM.META.NamedValue. These locators will correspond with those used
by the VehicleForge query interface to the extended type library, which has not
yet been finalized.

4.2 AVMID

The format for AVMID has not yet been finalized. These IDs are defined,
assigned, and tracked by the VehicleForge Component Exchange.

4.2.1 Path

The relative path to the resource, from the root node of the component package.

4.2.2 HashType

A hash of the resource. The required formatting is ”[hash method]:[hash]”.

5 Changelog

5.1 Version 1.1

The changes in this version supported the construction of a parsing library for
AVM Component models.

Changes:

• First release of the component model parsing library, implemented in C#
within the .NET framework

• Implementation details removed from Class Diagram

• Class Diagram implemented in Visual Studio Class Designer, to enable
automatic code generation
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• Associable baseclass added for Association targets that are not Features,
such as sub-parts of Features

• Made explicit the Base baseclass for Types

• Added File concept

• Added Description to Component class
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METAX R&D Final Report

PARC, Inc

September 25, 2012

1 Project Overview

The METAX project is developing a toolchain that will enable a 5x speed up in the
development time for complex cyber-physical systems (CPS). PARC’s role as a sub-
contractor to Vanderbilt University (VU) involved integrating our Qualitative Reasoning
Module (QRM) with VU’s CyPhy-based toolchain. Given that the Ricardo’s C2M2L
models are written in Modelica [3], and our previous experience with the language,
we focused our integration efforts around current open source Modelica tools (e.g.,
www.openmodelica.org) and models. The addition of Qualitative Reasoning (QR)[1] to
the design process is a promising approach as it underlies many design tasks and enables
reasoning at multiple levels of abstraction. Qualitative reasoning supports designers by
determining if a desired function is realizable, identifying dangerous unexpected interac-
tions, and guiding detailed design and redesign. While current behavioral analysis tools
require fully specified designs, qualitative reasoning provides feedback to designers on
underspecified models.

The remainder of this report describes our approach to applying QR to design. We
begin by describing our approach for performing QR on Modelica models. Then, we
describe applications of QR to the design process with examples. And we close with a
report on the current status of the project.

2 Performing Qualitative Reasoning with Modelica Models

With Modelica being the common dynamic simulation modeling langauge of AVM, it
was necessary to translate Modelica models into a form enabling qualitative reasoning.
The standard approach for modeling in QRM is to define a system as a set of connected
components where the behavior of each component is defined by a set of equations.
Given that Modelica is an object-oriented equation-based modeling language, our initial
approach was to perform a syntactic (text-to-text) translation of individual component
models. This approach was reconsidered for three reasons: (1) Modelica does not have a
standard representation for behavioral modes, (2) Modelica includes a model construc-
tion language performing computation during model instantiation, and (3) open-source
Modelica compilers perform a number of optimizations when constructing the model.
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Therefore, we focused our efforts on translating the instantiated Modelica model’s Dif-
ferential Algebraic Equations (DAEs) into qualitative constraints for use in QRM. Before
describing this process, we provide an overview of qualitative simulation, the underlying
inference algorithm of QRM.

2.1 Qualitative Simulation

Qualitative simulation [2][6] is the process of projecting forward, from an initial sit-
uation and a model, all possible qualitative states that may occur, an envisionment.
Qualitative representations of continuous quantities (e.g., the angular velocity of a gear)
are central to this process. In our familiar Newton-Leibnitz calculus, we use variables
to represent quantities that can take any value from the real number line, and vary
with time. Variables can have arbitrarily many higher-order derivatives. Likewise, in
qualitative reasoning, these variables and their derivatives take on values – except that
the values are qualitative. Each variable (or derivative) has a quantity space consisting
of an ordered set of landmark values representing important points for understanding
the behavior of the model (e.g., the turn-on voltage for a diode). A qualitative value
is either a landmark or the open interval denoted by two adjacent landmarks. For a
door, there are two landmark values: Closed and Open. The door’s position can be at
one of these two landmarks, or between the (Closed, Open). The qualitative value also
has a direction (a qualitative derivative) of increasing, decreasing or steady. The most
common quantity space uses just the sign of the real quantity. We represent the interval
x<0 as Q-, x=0 as Q0, and x>0 as Q+).

A qualitative state is an assignment of qualitative values to variables in the model.
We represent equations as qualitative constraints. Consider the equation governing
a resistor, V=I*R, where voltage, V, and current, I, are quantities and R is a fixed
parameter with a positive value. The resulting multiplication constraint ensures that
the qualitative product of I and R is V. Because R is a positive constant value, if I is
a negative value, then V must also be a negative value. Furthermore, their derivatives
must also match. Figure 1 defines qualitative addition and multiplication for sign values.

Figure 1: Qualitative Arithmetic Tables

+	   Q-‐	   Q0	   Q+	  

Q-‐	   Q-‐	   Q-‐	   Q?	  

Q0	   Q-‐	   Q0	   Q+	  

Q+	   Q?	   Q+	   Q+	  

*	   Q-‐	   Q0	   Q+	  

Q-‐	   Q+	   Q0	   Q-‐	  

Q0	   Q0	   Q0	   Q0	  

Q+	   Q-‐	   Q0	   Q+	  

Non-linear relationships are captured in a number of ways. For polynomials, simple
power constraints are used. For other non-linear functions, such as exponentials, we use
the monotonic function M+ constraint [6].

One of the most significant consequents of the coarseness of qualitative values is
that variables may be qualitatively constant for long periods of time (perhaps infinite).
Hence, qualitative simulation need only consider the instants of time at which there is a
possible change in qualitative value,. The passage of time is represented as an alternating
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sequence of instants and intervals. A qualitative state can either describe an instant or
an interval. Qualitative simulation determines all trajectories through the qualitative
state space from an initial state. Given a state, qualitative simulation computes possible
successors for each variable’s qualitative value and uses constraints to determine how
they may be combined to form a next, state or states, if any. The rules for generating
successor values and directions are based on the mean value theorem from calculus
[4]. Consider a position quantity that was between the open and closed landmarks and
moving toward closed. There are four possible successors for this quantity. Its value
may remain in the interval or reach the closed landmark and it may continue increasing
or become steady (its derivative stays positive or becomes Q0).

From basic calculus if a variable is non-zero at an instant, it will remain at that
qualitative value in the following interval. If the variable is 0, it will have the qualitative
value of its derivative over the following interval. There is one ambiguous case: if a
variable and its immediate derivative are both 0, the qualitative value on the following
interval is ambiguous (but the variable and its derivative must be qualitative equal during
the interval). Consider x=t2 when t=0. The qualitative values x and dx/dt are both
Q0, but x=Q+ on the following interval.

Cyber-physical systems include dynamics that are discrete as well as continuous (e.g.,
an input signal to open the door, the changing of gears in a drive train, a diode switching
from off to on). Qualitative Reasoning typically models discrete changes by modes or
operating regions, but as described in Section 2.3, we augmented QRM to align with
Modelica’s simulation with discrete changes occurring when the conditions of conditional
constraints change.

2.2 Translating Modelica Models

Figure 2 provides an overview of our approach for performing qualitative simulation of
Modelica models. In the first step, we use OpenModelica to produce a flattened DAE
model encoded in an XML file. This DAE includes the results of model construction,
algebraic simplification, and index reduction as part of the compilation process. Given
the set of equations produced by the OM compiler, we are often able to create the
set of constraints necessary to perform qualitative simulation. There are still certain
Modelica constructs that we cannot handle, but we are gradually reducing the size of
this untranslatable set. More discussion of this point in Section 4.1.

In addition to the equations, we also extract additional information about the vari-
ables of the system from the XML. The variables are divided into two classes: ordered,
which vary over time, and known, which are constant through the simulation. Model-
ica also allows designers to set initial values of variables through the use of the start

and fixed keywords. With this information, we instantiate one or more initial quali-
tative states and produce an envisionment by qualitative simulation constrained by the
equations.
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Figure 2: Overview of process to generate envisionments from Modelica models

XML 
Description of 

DAE 

Modelica Model              

Equations 

Envisionment 

2.3 Aligning Simulation Semantics with Modelica

In this section, we describe the semantics of qualitative simulation and its relationships
to Modelica semantics. Figure 3 illustrates the semantics of our qualitative simulation
algorithm. Given a model (upper left) with underspecified parameters (e.g., the peak
power output between 500-800 horsepower), qualitative simulation produces an envi-
sionment (lower left) using the equations that define the model. The meaning of this
envisionment is that every consistent numeric assignment of the underspecified param-
eters (upper right), will result in a quantitative simulation (the lower right), and each
quantitative simulation will correspond to a trajectory in the envisionment.

Figure 3: Qualitative simulation semantics

Simulate each 

All possible sets of consistent 
parameters of the model 

Qualitative 
Simulation 

Homomorphism 
Every quantitative trajectory exists in 
the envisionment. 

Many 
vehicles 

θ

time 

Aligning this definition, with Modelica’s simulation semantics is straightforward for
continuous integration, but requires some explanation for discrete events. In Modelica,
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continuous integration proceeds until an event occurs. Events may trigger other events
before continuous integration proceeds again. This differs from the standard qualitative
simulation interval, instant, interval semantics [1]. This is evident in how static versus
sliding friction are modeled. While typical QR modelers would define two modes and
transitions between them, Modelica modelers employ a state machine programmed using
a number of discrete variables. Figure 4 contains an illustrative subset of the partial
model for PartialFriction from the MSL. In order for an object to go from rest to
having a positive velocity, two events happen in succession at the same time point.
First, the startForward boolean becomes true when the torque is enough to overcome
the static friction, then the mode changes value to Forward if the resulting torque is
enough to overcome sliding friction. For more details on how Modelica treats events see
[11].

Given that Modelica simulation using the PartialFriction model above results in
5 different sets of values at the same time point, we created an analogous event system
in which the qualitative states at the instant the event sequence begins and ends are
represented in the quantitative simulation. This allows us to maintain the semantics in
Figure 3. We illustrate this using a simplified version of the Brake model, which does
not have an interpolation function, and system shown in Figure 5. The system includes
a ramp torque and an brake holding an inertia at rest. In the envisionment, the long
sequence of rectangles in the figure represents the sequence of events which begin the
inertia spinning. There are five terminal intervals. In four of these terminals, the ramp
plateaus before overcoming the static friction (there are four due to different amounts
of torque being applied on the brake). In the fifth terminal state, the system begins
spinning and then continuously accelerates. The full Modelica model for this system is
included as in Appendix A.

3 Qualitative Reasoning in the Design Process

We believe Qualitative Reasoning is the fundamental basis upon which engineers reason
about physical systems. Qualitative reasoning plays a key role in every facet of designing
a system ranging from early stage design [8] through understanding of simulation results,
to planning how designs need to be modified to meet requirements. Unfortunately, none
of the commonly used design/analysis tools provide computational QR support for these
tasks. Leaving qualitative reasoning entirely to the human engineer risks missing critical
inferences. Our vision is to create a design tool chain in which qualitative reasoning
supports every segment of the life cycle of a product. Over the course of this project,
we have identified and explored four design tasks benefiting from QR: exploring the
design space early, finding acceptable parameter relationships, focusing probabilistic
verification and identifying changes to bring the model closer to meeting the requirements
or unexpected nearby failures via trajectory analysis.
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Figure 4: Subset of the PartialFriction model from the Modelica Standard Library illus-
trating the use of multiple events to trigger a discrete transition

partial model PartialFriction

...

Boolean startForward(start = false, fixed = true);

Integer mode(final min = Backward, final max = Unknown,

start = Unknown, fixed = true);

equation

startForward = pre(mode) == Stuck

and (sa > tau0_max / unitTorque

or pre(startForward)

and sa > tau0 / unitTorque)

or pre(mode) == Backward

and w_relfric > w_small

or initial() and w_relfric > 0;

mode = if free

then Free

else if (pre(mode) == Forward

or pre(mode) == Free

or startForward)

and w_relfric > 0 then

Forward

else if (pre(mode) == Backward

or pre(mode) == Free

or startBackward)

and w_relfric < 0 then

Backward

else

Stuck;

...

end PartialFriction;
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Figure 5: Brake model and resulting envisionment

3.1 Early Design Exploration

One aspect of design space exploration is topological design (i.e., determining the config-
uration of abstract components). Figure 6 illustrates how Qualitative Reasoning assists
in this process. Given a set of potential designs created by a designer or a search al-
gorithm (e.g., DESSERT [10], GraphSynth [7]), QRM performs qualitative simulation
on each design. After the envisionment graph has been created, QRM provides the fol-
lowing analysis. If none of the trajectories violate requirements, then for all consistent
assignments of parameters, the system will satisfy all requirements. That is, the system
will not reach a state that violates a safety requirement or transition along an undesir-
able trajectory. If some trajectories violate requirements and others do not, then the
design may satisfy the requirements with appropriate constraints on component param-
eter values. In either case, detailed design is required to determine the assignment of
parameter values that best fits the needs of the designer. If all of the trajectories violate
requirements, detailed design is not necessary because no set of parameter values will
satisfy the requirement. In one experiment reported at a PI meeting, we showed how
a program automatically found the design for a simple circuit that satisfied a specified
requirement.

In addition to filtering out bad designs, qualitative reasoning provides feedback to
the designer or automated design tools. The envisionment itself is a form of feedback
expressing the range of possible behaviors for a design. In the next three sections, we
describe other types of feedback that can be automatically extracted from an envision-
ment.
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Figure 6: Qualitative reasoning during early design
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3.2 Acceptable Parameter Relationships

For many designs, qualitative simulation will result in both trajectories that satisfy the
requirements and trajectories that do not. As observed by Iwasaki [5] this ambiguity
is useful in design because it can alert designers to potential problems, and it can also
be used to construct additional constraints to guide detailed design. In this section we
present guards, which are constraints on the model that focus the envisionment toward
successful trajectories.

Figure 7: Design and corresponding envisionment which is ambiguous with respect to
the requirement that the light bulb turns on a short time after the switch is flipped

<1>  off , Q+

<105>  off , Q+

<185>  off , Q0 <169>  off , Q+

<229>  on , 

<269>  on , Q+

<330>  on , Q0

One source of ambiguity arises from the fact that each set of landmark variables is
defined with respect to a single component. Consider the circuit in Figure 7 with the
requirement is that the light bulb (diode) illuminates after the switch is flipped. The
envisionment includes one successful and one failed trajectory. In this model, there is
a battery voltage landmark (VBat) in the battery model and turn on voltage landmark
(OnV) in the diode model. This ambiguity results from ambiguity in the ordering of
these landmarks. In this situation, we are able to automatically extract the parameter
relationship necessary for the successful trajectory as follows. First, we propagate the
landmarks across constraints. Next, we look for each variable with multiple landmarks
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and create a set of models each representing a total ordering of the landmarks. In our
diode example, each voltage variable will have two landmarks. Therefore, we generate
three models representing the possible orderings the two landmarks:

1. OnV > VBat (-∞, -OnV, -VBat, Q0, VBat, OnV, ∞)

2. OnV = VBat (-∞, -L1, Q0, L1, ∞)

3. OnV < VBat (-∞, -VBat, -OnV, Q0, OnV, VBat, ∞)

L1 is a new landmark that is created that is equal to OnV and VBat. We create three
qualitative models with the same set of constraints, but with different quantity spaces
for the voltage variables in the model. We perform qualitative simulation on each of
the systems. The envisionment of the first system consists of three states terminating
when the capacitor is charged and the diode is off. By simulating the second system,
QRM determines that the initial conditions are inconsistent because the only trajectory
leads to an endless loop of discrete transitions (i.e., the diode switches between off and
on). The third system results in an envisonment of the successful trajectory. Therefore
any parameter settings that satisfy the inequality defining the system, OnV < VBat, will
result in a system that meets the requirements. In this manner, we can infer inequalities
to guide parameter selection in detailed design.

3.3 Focusing Probabilistic Verification

Probabilistic Certificate of Correctness (PCC) is an analysis of a fully specified de-
sign whose parameters are specified by distributions. The standard approach involves
sampling the parameter space and performing simulations. Extremely rare events are
either ignored, or poorly estimated due to limit samples. Given an envisionment, we
can identify which paths lead to these failures and also perform selective re-sampling to
better estimate their probabilities. Thereby focusing the quantitative analysis on ”black
swans”, low probability high impact events. This idea was originally used to explore the
potential outcomes of military engagements in DARPA’s Deep Green program [4].

Figure 8: Focused sampling for PCC calculations

99% .5% .5% 

80% 20% 

Resample	  for	  precision	  
and	  propagate	  through	  

the	  rest	  of	  the	  
envisionment	  

Figure 8 provides an illustrative example of an envisionment graph with transition
probabilities between the states. From the initial situation (2), the vast majority of
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parameter settings result in a direct transition to a successful state (7). A small per-
centage goes to an intermediate state (8), which from the envisionment, we know results
in a successful outcome. But the small number of samples which transition to 6 provide
an interesting opportunity to resample. Consider an monte carlo simulation of 1000
samples. 5 of which transition to state 6, and of these, all but 1 transitions results in
a successful transition. The small number of samples from state 6 may not provide an
accurate conditional probability, therefore we could resample from the parameters that
reach this state to better assess the likelihood of the design resulting in the failure in
state 10.

3.4 Trajectory Analysis

When all parameters are known, qualitative reasoning helps the designer to interpret the
results of the simulation. Trajectory analysis is the process of exploring the design by
looking at the trajectory of the quantitative simulation through the envisionment. Recall
from Section 2.3 that every possible quantitative model has a corresponding trajectory
in the envisionment of the qualitative simulation. Consider a failed trajectory, using
comparative analysis [12], qualitative reasoning suggests possible parameters to change
in order to change the trajectory to a successful one. Or in the case of a successful
simulation, the envisionment could illustrate which requirement failures are ”closest” to
the trajectory. Providing this knowledge to the design could assist with redesign efforts
to improve the robustness of the design.

3.5 Integrating QR with Design Tools

In order to realize the benefits of these techniques, they need to be accessible to designers.
Consequently, we have focused substantial effort on integrating our techniques with ex-
isting tools. We have integrated with a version of the OMEdit tool (www.openmodelica)
which provides a GUI for creating and simulating designs. QRM is invoked on a model
by simply clicking the ”ParcQR” button on the OMEdit interface. To achieve this, we
fixed a number of outstanding bugs in the XML equation dumping capabilities of the
OpenModelica compiler. This had the benefit of facilitating the integration with CyPhy
through a standalone executable, enabling QRM to be used by the AVM community.
Furthermore, the XML equations are also used as an input language to SRI’s Hybrid-
SAL verification system. By integrating with current design tools, we are able to make
continuous improvements to our tools available to designers as quickly as possible.

4 Current Status of QRM

While work is ongoing with respect to the model translation efforts and the creation of
interfaces enabling qualitative reasoning to support designers, we report in this section
the current status of QRM. We begin by discussing the differences between ”good” and
”bad” Modelica providing a scope for understanding our progress. Then we discuss to
what extent QRM works with existing models in the Modelica Standard Library, the
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August release of C2M2L models from Ricardo, and the RC car models from Vanderbilt.
Finally, we describe the classes of requirements applicable to our approach and how they
are translated into QRM.

4.1 Good Modelica vs. Bad Modelica

Well-formed models support many different kinds of analysis including simulation, veri-
fication and fault analysis. Unfortunately, Modelica allows for arbitrary non-declarative
algorithm blocks (e.g., interpolation tables, matrix transformations, external code) as
part of any model. These constructs appear in many Modelica Standard Library (MSL)
and C2M2L models. Therefore, we proposed the following principles of good modeling:
(1) as declarative as possible, minimize callouts to external code, (2) compositionality,
i.e., no function in structure, and (3) a standard mode representation. Models conform-
ing to these principles will support not only dynamic simulation through a Modelica
compiler, but will also support verification and fault analysis. When models require
algorithm blocks, analogous models or abstractions will need to be created to use the
verification techniques employed by PARC, SIFT, and SRI in the METAX projects.
An advantage of declarative representation is that enables diagnosis and exploration of
faulty behavior by interrogating the model. Currently, our model translation to QRM
works on fully declarative models and QRM requires qualitative representations of math
operations. At this point, we have not implemented trigonometry operators, for which
there are understood approaches in the QR community [9]. Therefore, fully declarative
models without trigonometry should work in the current version of QRM.

Another modeling issues is the need for a standard interface to the results of dif-
ferent Modelica compilers. While Dymola is an industry standard, it is also an expen-
sive commercial product without a well-defined interface for programmatic interaction.
OpenModelica and JModelica are two open-source Modelica compilers. While the open-
source nature of these projects facilitates integration with other software tools, they are
both currently immature with respect to covering the entire Modelica language and the
models being produced by Ricardo in C2M2L. As indicated in Section 2.2, we are using
the flattened DAE produced by OpenModelica.

4.2 Application of QRM to Existing Models

While, the full integration with VU tools has been tested, and demonstrated at the
September AVM PI meeting, using the Battery model and test bench shown in Appendix
B, in this section, we report on the current status of model translation and QRM on three
sets of existing models: the Modelica Standard Library, August C2M2L Modelica models
from Ricardo, and the RC Car models released by VU in August. As our approach relies
on OpenModelica, we report the number of models for which OpenModelica produces
a simulation for context. Also as indicated in Section 3, a total envisionment is not
always necessary or desired, therefore we outline the number of models which produces
depth-bounded envisionment as well as a total envisionment within a reasonable timeout
(X seconds).
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4.3 What Requirements can be Addressed?

Our analysis of the FANG requirements document indicates that QRM applicable to
Vehicle Functionality Requirements, or behavioral requirements. These requirements
describe a state of the cyber-physical system and a context of use. These requirements
include safety requirements specifying a state that should be avoided, e.g., requirement
4.7.5 ”On a level, hard surface without use of service brakes, the vehicle shall operate
at a speed no greater than: 4.0 kph,” and performance requirements illustrating a state
that must be achieved, e.g., requirement 4.8.1 ”The vehicle shall steer at least 30 degrees
while coasting with the engine inoperative at speeds of ≥ 40 khp.” Our work with VU
has discussed an appropriate interface for entering these requirements into CyPhy and
analogous Modelica templates.

Figure 9: Example FANG requirement in Modelica

...

parameter Real threshold = 30;

type Requirement = enumeration(violated, success, unknown);

Requirement req1 (start = Requirement.unknown);

if req1 == Requirement.success or threshold < vehicle1.orientation then

req1 = Requirement.success;

elseif final()

req1 = Requirement.violated;

else

req1 = Requirement.unknown;

end if;

...

Consider the performance requirement requirement concerning the vehicle steering.
This is a simple threshold requirement that vehicle must enter a state in which the
orientation of vehicle has rotated 30 degrees. If in the use case where the operator steers
the vehicle right and the orientation of the vehicle begins at 0 degrees, then the designer
would enter the requirement that the vehicle reaches a state in which its heading is
greater than 30 degrees. Figure 9 illustrates the filled in Modelica template for this
requirement.

The requirement to the CyPhy test bench and passed to the model translator with
the associated Modelica model. Requirement violations terminate trajectories in quali-
tative simulation and color coded in our visualization for the envisionment. This allows
the engineer to quickly access which requirements may be violated by a designer to
understand the behavior which leads to it.
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5 Discussion

PARC’s performance on the METAX project has focused on the integration of the Qual-
itative Reasoning Module (QRM) with the Vanderbilt tool-chain. As described in this
report, qualitative reasoning can be used to support engineers in a variety of design tasks
including exploring the design space, determining acceptable parameter relationships,
focusing numeric analysis, and providing feedback based on the results of quantitative
simulations. To place these capabilities in the hands of designers, we integrated our tool
with OpenModelica’s compiler, which enabled integration with an open-source design
tool (OMEdit) as well as Vanderbilt’s CyPhy tool-chain. We have demonstrated this
through a number of examples at PI meetings over the course of this program. As the
program progressed, we have been given models from system engineers at Vanderbilt and
Ricardo. Our analysis of these models led us to define ”Good Modelica” which we have
outlined here as a set of modeling principles to enable model use in a range of analysis
tasks including simulation, verification, and fault analysis. Our analysis of models that
do not currently work in QRM results in two groups of models: (1) imperative models
and (2) models including unhandled operators (e.g., trigonometry). While imperative
models pose a problem for all verification approaches, Ricardo agrees that imperative
models are frequently the result of bad modeling and is working to make their models as
declarative as possible. The second group of models is addressed by implementing model
translation and qualitative versions of the offending operators. Consequently, we expect
the number of models in each group to reduce overtime. By integrating QRM with the
results of compiled Modelica models, we are able to apply our tool to a large number
of existing models and provide continuous improvements ensuring that the remaining
semantically grounded.
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6 Appendixes

6.1 Appendix A

package Simple Brake Tests
model Brake Test 1

Modelica . Mechanics . Rotat iona l . Sources . Torque torque1 ;
Modelica . Blocks . Sources .Ramp ramp1 ( durat ion = 1) ;
Modelica . Blocks . Sources . Constant const ( k = 1) ;
Modelica . Mechanics . Rotat iona l . Components . I n e r t i a i n e r t i a 1 ;
Modelica . Mechanics . Rotat iona l . Components . Brake brake2 ;

equat ion
connect ( const . y , brake2 . f no rma l i z ed ) ;
connect ( brake2 . f l ange b , i n e r t i a 1 . f l a n g e a ) ;
connect ( torque1 . f l ange , brake2 . f l a n g e a ) ;
connect ( ramp1 . y , torque1 . tau ) ;

end Brake Test 1 ;

model BrakePARC
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extends Modelica . Mechanics . Rotat iona l . I n t e r f a c e s .
PartialElementaryTwoFlangesAndSupport2 ;

parameter Real mue0( f i n a l min = 0) ;
parameter Real peak ( f i n a l min = 1) = 1 ”peak∗mue pos [ 1 , 2 ] =

maximum value o f mue f o r w re l ==0”;
parameter Real cgeo ( f i n a l min = 0) = 1 ”Geometry constant

conta in ing f r i c t i o n d i s t r i b u t i o n assumption ” ;
parameter Real fn max ( f i n a l min = 0 , s t a r t = 1) ”Maximum

normal f o r c e ” ;
// extends Modelica . Mechanics . Rotat iona l . I n t e r f a c e s .

P a r t i a l F r i c t i o n ;
extends PartialFrictionPARC ;
Real phi ”Angle between s h a f t f l a n g e s ( f l ange a , f l a n g e b )

and support ” ;
Real tau ”Brake f r i c t i o n torqu ” ;
Real w ” Absolute angular v e l o c i t y o f f l a n g e a and f l a n g e b

” ;
Real a ” Absolute angular a c c e l e r a t i o n o f f l a n g e a and

f l a n g e b ” ;
Real fn ”Normal f o r c e (=fn max∗ f no rma l i z ed ) ” ;
// Constant a u x i l i a r y v a r i a b l e
Modelica . Blocks . I n t e r f a c e s . RealInput f no rma l i z ed ”

Normalized f o r c e s i g n a l 0 . . 1 ( normal f o r c e = fn max∗
f no rma l i z ed ; brake i s a c t i v e i f > 0) ” ;

equat ion
phi = f l a n g e a . phi − phi support ;
f l a n g e b . phi = f l a n g e a . phi ;
w = der ( phi ) ;
a = der (w) ;
w r e l f r i c = w;
a r e l f r i c = a ;
f l a n g e a . tau + f l a n g e b . tau − tau = 0 ;
fn = fn max ∗ f no rma l i z ed ;
tau0 = mue0 ∗ cgeo ∗ fn ;
tau0 max = peak ∗ tau0 ;
f r e e = fn <= 0 ;
tau = i f locked then sa ∗ unitTorque e l s e i f f r e e then 0

e l s e cgeo ∗ fn ∗ ( i f startForward then mue0 e l s e i f
startBackward then −mue0 e l s e i f pre (mode) == ModeType .
Forward then mue0 e l s e −mue0) ;

end BrakePARC ;
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p a r t i a l model PartialFrictionPARC ” P a r t i a l model o f Coulomb
f r i c t i o n e lements − PARC using enumerated types ”

parameter Real w small = 10000000000 ” Re la t i v e angular
v e l o c i t y near to zero i f jumps due to a r e i n i t ( . . ) o f
the v e l o c i t y can occur ( s e t to low value only i f such
impulses can occur ) ” ;

// Equations to d e f i n e the f o l l o w i n g v a r i a b l e s have to be
de f ined in s u b c l a s s e s

Real w r e l f r i c ” Re la t i v e angular v e l o c i t y between
f r i c t i o n a l s u r f a c e s ” ;

Real a r e l f r i c ” Re la t i v e angular a c c e l e r a t i o n between
f r i c t i o n a l s u r f a c e s ” ;

// SI . Torque tau ” F r i c t i o n torque ( p o s i t i v e , i f d i r e c t e d in
oppos i t e d i r e c t i o n o f w re l ) ” ;

Real tau0 ” F r i c t i o n torque f o r w=0 and forward s l i d i n g ” ;
Real tau0 max ”Maximum f r i c t i o n torque f o r w=0 and locked ” ;
Boolean f r e e ” true , i f f r i c t i o n a l element i s not a c t i v e ” ;
// Equations to d e f i n e the f o l l o w i n g v a r i a b l e s are g iven in

t h i s c l a s s
Real sa ( f i n a l un i t = ”1”) ”Path parameter o f f r i c t i o n

c h a r a c t e r i s t i c tau = f ( a r e l f r i c ) ” ;
Boolean startForward ( s t a r t = f a l s e , f i x e d = true ) ” true , i f

w re l=0 and s t a r t o f forward s l i d i n g ” ;
Boolean startBackward ( s t a r t = f a l s e , f i x e d = true ) ” true ,

i f w re l=0 and s t a r t o f backward s l i d i n g ” ;
Boolean locked ( s t a r t = f a l s e ) ” true , i f w re l=0 and not

s l i d i n g ” ;
type ModeType = enumeration (Unknown , Free , Forward , Stuck ,

Backward ) ;
ModeType mode( s t a r t = ModeType . Unknown , f i x e d = true ) ;

p ro tec ted
constant Real un i tAngu la rAcce l e ra t i on = 1 annotat ion (

HideResult = true ) ;
constant Real unitTorque = 1 annotat ion ( HideResult = true ) ;

equat ion
startForward = pre (mode) == ModeType . Stuck and ( sa >

tau0 max / unitTorque or pre ( startForward ) and sa > tau0
/ unitTorque ) or pre (mode) == ModeType . Backward and

w r e l f r i c > w small or i n i t i a l ( ) and w r e l f r i c > 0 ;
startBackward = pre (mode) == ModeType . Stuck and ( sa < −

tau0 max / unitTorque or pre ( startBackward ) and sa < −
tau0 / unitTorque ) or pre (mode) == ModeType . Forward and
w r e l f r i c < −w small or i n i t i a l ( ) and w r e l f r i c < 0 ;
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l ocked = not f r e e and not ( pre (mode) == ModeType . Forward or
startForward or pre (mode) == ModeType . Backward or

startBackward ) ;
a r e l f r i c / un i tAngu la rAcce l e ra t i on = i f locked then 0 e l s e

i f f r e e then sa e l s e i f startForward then sa − tau0 max
/ unitTorque e l s e i f startBackward then sa + tau0 max /
unitTorque e l s e i f pre (mode) == ModeType . Forward then

sa − tau0 max / unitTorque e l s e sa + tau0 max /
unitTorque ;

mode = i f f r e e then ModeType . Free e l s e i f ( pre (mode) ==
ModeType . Forward or pre (mode) == ModeType . Free or
startForward ) and w r e l f r i c > 0 then ModeType . Forward
e l s e i f ( pre (mode) == ModeType . Backward or pre (mode) ==
ModeType . Free or startBackward ) and w r e l f r i c < 0 then
ModeType . Backward e l s e ModeType . Stuck ;

annotat ion ( Documentation ( i n f o = ”<html>
<p>
Basic model f o r Coulomb f r i c t i o n

that models the stuck phase in
a r e l i a b l e way .

</p>
</html>”) ) ;

end PartialFrictionPARC ;
end Simple Brake Tests ;

6.2 Appendix B

with in C2M2L RC Car . Powertrain . Battery ;
model Battery

extends Modelica . Blocks . I n t e r f a c e s . BlockIcon ;
parameter Real I n n e r R e s i s t o r = 0 . 0 0 1 ;
parameter Real I n i t i a l V o l t a g e ( s t a r t = 6 . 5 , min = 5 . 5 ) ;
parameter Real LifeTime = 5400 ;
parameter Real minV = 5 . 5 ;
parameter Real maxV = 6 . 5 ;
parameter Real Cap = −(LifeTime /8 .55564) ∗ l og (1−(minV/maxV) ) ;
Real b a t t e r y l i f e

” Percentage o f charge which the batte ry has l e f t . Battery
i s cons ide r ed dead when t h i s va lue drops to zero .
Determined by look ing at the bat te ry vo l tage ; bat te ry i s

dead once the vo l tage h i t s 5 . 5 ” ;
Modelica . E l e c t r i c a l . Analog . Bas ic . Capacitor c a p a c i t o r ( v ( s t a r t

= I n i t i a l V o l t a g e ) , C=Cap) ;
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Modelica . E l e c t r i c a l . Analog . Bas ic . R e s i s t o r r e s i s t o r (R=1000000)
;

Modelica . E l e c t r i c a l . Analog . Bas ic . R e s i s t o r r e s i s t o r 1 (R=
I n n e r R e s i s t o r ) ;

Modelica . E l e c t r i c a l . Analog . I n t e r f a c e s . Pin p o s i t i v e ;
Modelica . E l e c t r i c a l . Analog . I n t e r f a c e s . NegativePin negat ive ;
Modelica . Blocks . I n t e r f a c e s . RealOutput b a t t e r y l i f e ;

equat ion
b a t t e r y l i f e = ( p o s i t i v e . v − 5 . 5 ) ∗100 ;
b a t t e r y l i f e = b a t t e r y l i f e ;
connect ( c a p a c i t o r . p , r e s i s t o r 1 . p ) ;
connect ( r e s i s t o r . p , r e s i s t o r 1 . p ) ;
connect ( r e s i s t o r 1 . n , p o s i t i v e ) ;
connect ( c a p a c i t o r . n , negat ive ) ;
connect ( r e s i s t o r . n , negat ive ) ;

end Battery ;

with in C2M2L RC Car . Powertrain . Battery ;
model RCBatteryTest

import RCBattery ;
import C2M2L RC Car ;
Modelica . E l e c t r i c a l . Analog . Bas ic . Ground ground ;
Modelica . E l e c t r i c a l . Analog . Bas ic . R e s i s t o r r e s i s t o r (R=1000) ;
C2M2L RC Car . Powertrain . Battery . Battery rCBattery1 (

I n n e r R e s i s t o r =2, I n i t i a l V o l t a g e =6.5) ;
equat ion

connect ( r e s i s t o r . n , ground . p) ;
connect ( rCBattery1 . p o s i t i v e , r e s i s t o r . p ) ;
connect ( rCBattery1 . negat ive , ground . p) ;

end RCBatteryTest ;
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HybridSAL Relational Abstraction
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Abstract. We describe the relational abstraction component of the Meta
Verification tool chain. Relational abstraction is a technique for verifying
safety requirements. It does so by abstracting the given system, which
could have a combination of continuous and discrete dynamics, into a
purely discrete system. The abstract discrete system is then analyzed
using automated verification techniques, such as model checking. The
relational abstraction component consists of:
– a Modelica to HybridSal translator,
– HybridSal relational abstracter, and
– Sal infinite bounded model checker and k-induction prover.

This report describes these components, its strength and limitations, and
its use for safety verification.

1 Introduction

The HybridSal relational abstraction tool is part of the Meta verification tool
chain. The relational abstraction component of the tool chain can verify safety
properties of a system model. Safety properties state that the system always
remains inside some safety bounds; or, in other words, the system never reaches
an “unsafe” state.

The systems being analyzed here are complex in at least two different ways.
First, they are high dimensional; that is, their state is described by a large num-
ber of variables. Second, the dynamics of the system contain a combination of
both discrete and continuous behaviors. As a result, automated verification of
such systems is challenging. Relational abstraction is an approach for verifica-
tion that addresses this challenge by first constructing an abstraction of the
system, and then verifying safety properties on the abstract system. Relational
abstractions are often more precise than a purely qualitative abstraction of the
system, but they are still abstract enough to enable tractable analysis using state
exploration verification tools.

The HybridSal relational abstraction tool has its own modeling language
for hybrid dynamical systems, called the HybridSal language. It extends the SAL

language, which was designed for modeling discrete state transition systems, with
features that enable modeling of continuous dynamical systems. The HybridSal
language has support for modeling a system as a composition of subsystems, and
supports nondeterminism and symbolic parameter values.

For purposes of integration with the larger Meta verification tool box, Hy-
bridSal also accepts Modelica models. Specifically, the tool currently accepts as
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Fig. 1. Relational Abstraction Tool Flow.

input the XML dump of the flattened Modelica model generated by the Open-
Modelica compiler. This frontend is implemented as a separable component of
HybridSal, called modelica2hsal. Due to time constraints and the richness of
the Modelica language, the modelica2hsal tool can convert on a limited subset
of Modelica models into HybridSal. The modelica2hsal tool, its features, and
its limitations are described in Section 2.

The HybridSal relational abstraction algorithm and implemention is de-
scribed in Section 3. We also describe the limitations of the abstracter in that
section.

The abstraction constructed by the HybridSal relational abstraction tool is
output as a SAL model. We briefly describe the SAL model checking tools that
can be used to analyze this abstract system in Section 4.

Figure 1 shows the overall architecture of our verification tool and its three
main components. We describe, in detail, these three components in subsequent
sections.

2 modelica2hsal: Converting Modelica to HybridSal

The modelica2hsal tool converts a Modelica model into a HybridSal model. The
input to the tool is a file containing the XML dump of the flattened Modelica
model generated by the OpenModelica compiler. The output of the tool is a file
containing the HybridSal model. The tool also takes a second optional argument,
which is a file that contains the context model and the requirement specification.
When the optional argument is provided, the modelica2hsal tool automatically
includes the model of the context and the property in the generated HybridSal
file.

The key technical difficulty in converting Modelica models into HybridSal
models is that Modelica represents models as a set of differential algebraic equa-
tions (DAEs), whereas HybridSal represents systems as a collection of ordinary
differential equations with switching between them (switched ODEs). In the pro-
cess of converting DAEs into switched ODEs, one has to eliminate the algebraic
constraints in the DAEs. There is no algorithmic procedure to achieve this goal.
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There are heuristics based on simplifying the DAEs using different simplification
rules.

The modelica2hsal tool is implemented as follows:

1. Read the XML dump generated by Modelica
2. Output the DAEs in a .dae file
3. Parse the .dae file and create a .daexml file
4. Simplify the .daexml
5. Map the simplified .daexml into HybridSal model

The main step in the translation is the simplification step above. The modelica2hsal
tool currently implements several different simplifications, including

Constant propagation: If a variable is known to have a fixed constant value,
then it is uniformly replaced by that value in the entire model and eliminated.
The constant propagation process can be written as the following rewrite
rule:

x = c, e[x]→ e[x 7→ c] (1)

where e is any expression and e[x 7→ c] denotes the result of replacing x by
c everywhere in e.

partial evaluation: If subexpressions can be evaluated as a result of constant
propagation, then they are evaluated and replaced by the computed value
for them. Application of partial evaluation can result in more possibilities
for constant propagation, and vice versa. Some sample rewrite rules that
describe partial evaluation are mentioned below:

c1 + c2→ c where c is the sum of c1 and c2 (2)

0 ∗ e→ 0 (3)

0 + e→ e (4)

e− 0→ e (5)

ite(True, e1, e2)→ e1 (6)

False ∧ e→ False (7)

Term normalization: Expressions in the model are normalized using rewriting
rules. For example, x + 2x + y is normalized to 3x + y, and x + (−x) is
normalized to 0. The Modelica expression language has “if-then-else” as a
language construct. Sometimes the different operating modes of the system
are hidden inside such “if-then-else” expressions. For example, the differential
equation

dx

dt
= if c then e1 else e2

is a way to represent two modes: in one mode (when c is true), dx/dt = e1,
and in the second mode (when c is false), dx/dt = e2. However, nested
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“if-then-else” expressions and combination of “if-then-else” expressions with
algebraic operators, such as +,−, ∗ make the problem of identifying modes
more difficult. We use the following normalization rules for handling these
cases:

ite(c1, ite(c2, e1, e2), e3)→ ite(c1 ∧ c2, e1, ite(c1 ∧ ¬c2, e2, e3)) (8)

ite(c1, e1, e2) + e→ ite(c1, e1 + e, e2 + e) (9)

ite(c1, e1, e2)− e→ ite(c1, e1− e, e2− e) (10)

ite(c1, e1, e2) ∗ e→ ite(c1, e1 ∗ e, e2 ∗ e) (11)

ite(c1, e1, e2)/e→ ite(c1, e1/e, e2/e) (12)

Note that application of one rule can trigger application of others. We apply
all simplification and rewrite rules until they can be applied no more.

The rewrite rules, Rule (1)–Rule (12), is not intended to be exhaustive list
of all rules used by the modelica2hsal translator. Its purpose is to just give an
idea of the simplification steps performed during the translation.

There are plenty of special rewrite rules to simplify and handle expressions
that are intrinsic to Modelica, such as,

1. set and set access:
2. computing cross product and dot product of two vectors
3. computing transpose of a matrix
4. user-defined interpolation function
5. arithmetic expressions over set terms
6. predefined functions, such as, sqrt, abs, cos, sin, Real, noEvent, der

Note that the simplification rules may not always be successful in eliminating
certain functions; for example, sin can be eliminated (using the simplification
rewrite rules) if it is always applied to a statically known constant (for e.g., 0 or
π/2), but it can not be eliminated in general.

An important step during the simplification phase is the step that replaces
(non fixed) variables by equivalent expressions. This is a way to eliminate alge-
braic constraints from the DAEs. We take care not to eliminate state variables.
If we can generate an expression x = e by simplification, and x is not defined
to be a state variable, we replace x by e everywhere in the Modelica model and
eliminate x.

There are also additional simplification rules for handling tables, and the
interpolation function. Essentially, a table is converted to a large “if-then-else”
expression.

2.1 modelica2hsal: Translating Simplified DAEs to HybridSal

After the DAEs are simplified using the simplification rules described above, the
tool attempts to convert them into HybridSal. The final HybridSal model is a
synchronous composition of three different base modules:
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– a controller
– a plant
– a monitor

The property (requirement) are captured separately in the HybridSal file. The
context model is currently integrated into the HybridSal model. Ideally, it should
be implemented as a separate synchronously composed module (like the monitor
module).

The final conversion step is performed as follows:

1. identify the variables that define the state space of the system
2. identify the modes of the system
3. create the controller module
4. create the plant module
5. create the monitor module

The modes are identified by collecting all predicates that occur in the “if-then-
else” expressions in the DAEs.

The controller module. Next, we generate the controller module. The controller
module updates all discrete variables. It is obtained from those equations in the
set of all DAEs that
(a) do not contain the derivative, der, operator
(b) can be written as x = e, and x is a discrete state variable
To guarantee the latter condition, modelica2hsal also implements a symbolic
equation solver.

The controller also makes sure that, in each step, some predicate (from the
set of all predicates computed above) always changes.

The feature of HybridSal that makes the translation possible is that Hybrid-
Sal allows two variants of each state variable in expressions – x and x′ – x is
the previous value and x′ is the value in the next time step. Modelica also uses
two variants of each state variable: pre(x) and x, with the same meaning.

The plant module. The plant module is created from those equations in the
system of DAEs that
(a) contain the derivative, der, operator
(b) can be written as der(x) = e, where x is a continuous state variable
As mentioned before, all conditions that occur in if-then-else expressions are
collected and they define the modes of the system. The plant HybridSal module
enumerates all modes of the system; and for each mode, it contains a system of
differential equations extracted from the DAEs.

Each HybridSal module also has an initialization block, where variables can
be initialized. Initial values for variables are extracted from the ’initialValue’
attribute of the variables in Modelica XML dump. Some initialization equations
are also extracted from the DAEs that contain the ’initial’ function in the ex-
pressions.

5



{"context" : "TRUE",

"property" :

{"f" : "G",

"nargs": 1,

"args" :

[{"f" : "=>",

"nargs": 2,

"args" :

[{"f" : ">=",

"nargs": 2,

"args" : ["MassSpringDamper_Mass_Steel_ModelicaModel_s", 1] },

{"f" : "<=",

"nargs": 2,

"args" : ["MassSpringDamper_Damper_Damper_mo_v_rel", -4] } ] } ] } }

Fig. 2. Example of a context and property description in json format that can be used
as an optional input to the modelica2hsal translator. The context here is True and
the property is G(s ≥ 1⇒ vrel ≤ −4), where s and vrel denote the variables whose full
names can be found in the json description above. G is the “always” temporal operator.

The monitor module. A separate HybridSal module is used to enforce that the
system dynamics satisfy some constraints. Specifically, algebraic equations that
can not be eliminated by simplification and equation solving can be just moni-
tored. The monitor module is synchronously composed with the rest of the sys-
tem, so if it can not make a step (because some constraint failed), then the whole
system deadlocks. Monitors are also used to implement the context model.

Context and Property Modeling in HybridSal The modelica2hsal tool takes an
optional second argument that is a file containing the context assumptions and
the property to be proved of the model. This information can be provided in two
different formats: either in XML format, or in JSON format.

Rather than describing the syntax of the json file, we just give an example
of a sample json file in Figure 2. Similarly, we give an example of an XML
representation of the context and property in Figure 3.

2.2 modelica2hsal: Limitations

The modelica2hsal converter can successfully convert several OpenModelica
generated XML dumps into HybridSal. However, it is also unable to convert
many more other XML dumps into HybridSal. In this section, we discuss the
causes for this incompleteness.

The big sources of incompleteness are the following:

Trignometric functions. If the Modelica DAEs contain trignometric func-
tions, then the modelica2hsal translator can fail to generate a HybridSal
model. This is because HybridSal does not support trignometric functions
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<CONTEXTPROPERTY>

<CONTEXT>

<APPLICATION INFIX="YES"> <NAMEEXPR>AND</NAMEEXPR>

<TUPLELITERAL>

<APPLICATION INFIX="YES" PARENS="1"> <NAMEEXPR>&gt;</NAMEEXPR>

<TUPLELITERAL>

<NAMEEXPR>u</NAMEEXPR> <NUMERAL>500</NUMERAL>

</TUPLELITERAL>

</APPLICATION>

<APPLICATION INFIX="YES" PARENS="1"> <NAMEEXPR>&lt;</NAMEEXPR>

<TUPLELITERAL>

<NAMEEXPR>u</NAMEEXPR> <NUMERAL>1000</NUMERAL>

</TUPLELITERAL>

</APPLICATION>

</TUPLELITERAL>

</APPLICATION>

</CONTEXT>

<PROPERTY>

<APPLICATION> <LTLOP>G</LTLOP>

<TUPLELITERAL>

<APPLICATION INFIX="YES" PARENS="1"> <NAMEEXPR>&lt;</NAMEEXPR>

<TUPLELITERAL>

<NAMEEXPR>J_crank.w</NAMEEXPR> <NUMERAL>2000</NUMERAL>

</TUPLELITERAL>

</APPLICATION>

</TUPLELITERAL>

</APPLICATION>

</PROPERTY>

</CONTEXTPROPERTY>

Fig. 3. Property and context model presented in XML. The modelica2hsal converter
can take this as an optional argument and generate HybridSal with necessary informa-
tion. Here the context is u ≥ 500∧ u ≤ 1000, and the property is G(Jcrank.w ≤ 2000).
G is the “always” temporal operator.

in its expression language. The reason why HybridSal does not include trig-
nometric functions is that there is no easily decidable theory for them.

Nonlinear models. If the Modelica DAEs contain nonlinear expressions, such
as x∗y or x2 or

√
(x), then the modelica2hsal translator can fail to generate

a HybridSal model. This is because HybridSal does not support nonlinear
models.

New user defined functions. If the Modelica DAEs contain calls to user-
defined functions that are not already handled by the modelica2hsal trans-
lator, then the modelica2hsal translator can fail to generate a HybridSal
model. This is because the modelica2hsal translator does not parse the C-
like code of user-defined functions. Rather, handling of certain user-defined
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functions that occur commonly in the models is hard coded into the trans-
lator. One such example is the linear interpolation function.

Special variables. If the Modelica DAEs contain special (predefined in Mod-
elica) variables, then the modelica2hsal translator can fail to generate a
HybridSal model. One such special variable is the time variable. Since this
variable occurs frequently, we have added a flag --addTime to the translator
that allows handling of Modelica models that contain the time variable.
Alternatively, there is also an option of ignoring the time variable and all
equations that contain the time variable. This is useful when the time vari-
able is used to create a particular context for performing simulation. The
flag --removeTime should be used in this case.

Processing of DAEs. If the Modelica DAEs are not simplified into a form
that can be written as a set of switched ODEs with some discrete update,
then the translator can fail to generate a HybridSal model.

Caveat: In some cases, it may happen that the translator terminates suc-
cessfully and creates a HybridSal file, but the generated HybridSal file is not
well formed. The translator, currently, does not do a well-formedness check on
the generated file. For example, if the simplification procedure on the DAEs
results in two equations that appear to be both setting the value of dx/dt, the
generated HybridSal file can have two ODEs for dx/dt. The HybridSal relational
abstraction tool can fail on such models. In these cases, a manual inspection of
the generated HybridSal file may be required.

Caveat: The modelica2hsal translator has not been extensively tested. It
remains unclear how to validate the translator, because there is nothing known
about the input Modelica models that can be cross checked with the generated
HybridSal model. While the translator attempts to perform a semantic preserv-
ing translation from Modelica to HybridSal, it may not always guarantee the
equivalence of Modelica model and the HybridSal model. In most cases, we ex-
pect the output to be equivalent, and in cases when it is not, we expect the
HybridSal model to be more abstract than the input Modelica model. This is
because, on a few occassions, the translator may ignore some equations in the
given DAEs, and hence, generate a model with more behaviors.

Caveat: One issue that arises when translating requirements from Modelica
to HybridSal is the naming issue. In the process of model transformation and
model simplification, variables get renamed, or eliminated, or mapped into other
variables. Hence, a single state variable can have multiple names in different mod-
els. When translating requirements, it is important to ensure that the naming is
consistent across the model and the properties. The current implementation of
the translator does not perform this consistency check.

2.3 modelica2hsal: Performance

The translator simplifies each expression separately, and hence it is computa-
tionally very fast. So far, scalability of the translator has not been an issue. On
the available benchmarks (RC Car component models, Mass Spring, etc.), the
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translator is able to successfully translate about 50% of the Modelica models
into HybridSal. The main cause for failure on the other models are trignometric
functions.

As a final note, we remark that Modelica may not be a good choice for a
front-end language that is driving backend verification tools. We give two main
reasons below.

– Modelica is a language for building simulation models. As a result, it does
not have some key features – such as nondeterminism – that are essential
for a language describing (partial) designs, or highly abstract systems.

– Modelica does not provide a clean separation of three parts of a model – the
context model, the actual system model, and the properties. Often, context
model is tightly integrated into the system model.

3 HybridSal Relational Abstracter

After the Modelica model is translated into HybridSal, it is abstracted into a
discrete SAL model using the relational abstraction tool. In this section, we will
describe the theory and implementation of the relational abstractor.

A dynamical system (X, a→) with state space X and transition relation
a→ ⊆

X×X is a relational abstraction of another dynamical system (X, c→) if the two

systems have the same state space and
c→ ⊆ a→. Since a relational abstraction

contains all the behaviors of the concrete system, it can be used to perform
safety verification.

HybridSAL relational abstracter is a tool that computes a relational ab-
straction of a hybrid system as described by Sankaranarayanan and Tiwari [8].
A hybrid system (X,→) is a dynamical system with
(a) state space X := Q × Y, where Q is a finite set and Y := Rn is the n-
dimensional real space, and
(b) transition relation →:=→cont ∪ →disc, where →disc is defined in the usual
way using guards and assignments, but→cont is defined by a system of ordinary
differential equation and a mode invariant. One of the key steps in defining the
(concrete) semantics of hybrid systems is relating a system of differential equa-
tion dy

dt = f(y) with mode invariant φ(y) to a binary relation over Rn, where y
is a n-dimensional vector of real-valued variables. Specifically, the semantics of
such a system of differential equations is defined as:

y0 →cont y1 if there is a t1 ∈ R≥0 and a function F from [0, t1] to Rn s.t.

y0 = F (0),y1 = F (t1), and

∀t ∈ [0, t1] :

(
dF (t)

dt
= f(F (t)) ∧ φ(F (t))

)
(13)

The concrete semantics is defined using the “solution” F of the system of differ-
ential equations. As a result, it is difficult to work directly with it.

The relational abstraction of a hybrid system (X, c→cont∪
c→disc) is a discrete

state transition system (X, a→) such that
a→ =

a→cont ∪
c→disc, where

c→cont ⊆
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a→cont. In other words, the discrete transitions of the hybrid system are left
untouched by the relational abstraction, and only the transitions defined by
differential equations are abstracted.

The HybridSal relational abstracter tool computes such a relational abstrac-
tion for an input hybrid system. In this section, we describe the tool, the core
algorithm implemented in the tool, and we also provide some examples.

3.1 hsal2sal: Abstraction Algorithm

Given a system of linear ordinary differential equation, dx
dt = Ax+b, we describe

the algorithm used to compute the abstract transition relation
a→ of the concrete

transition relation
c→ defined by the differential equations.

The algorithm is described in Figure 4. The input is a pair (A, b), where A is
a (n×n) matrix of rational numbers and b is a (n×1) vector of rational numbers.
The pair represents a system of differential equations dx

dt = Ax + b. The output
is a formula φ over the variables x,x′ that represents the relational abstraction
of dx

dt = Ax + b. The key idea in the algorithm is to use the eigenstructure of
the matrix A to generate the relational abstraction.

The following proposition states the correctness of the algorithm.

Proposition 1. Given (A, b), let φ be the output of procedure linODEabs in
Figure 4. If →cont is the binary relation defining the semantics of dx

dt = Ax + b
with mode invariant True (as defined in Equation 13), then →cont ⊆ φ.

By applying the above abstraction procedure on to the dynamics of each
mode of a given hybrid system, the HybridSal relational abstracter constructs
a relational abstraction of a hybrid system. This abstract system is a purely
discrete infinite state space system that can be analyzed using infinite bounded
model checking (inf-BMC), k-induction, or abstract interpretation.

We make two important remarks here. First, the relational abstraction con-
structed by procedure linODEabs is a Boolean combination of linear and nonlin-
ear expressions. The nonlinear expressions can be replaced by their conservative
linear approximations. The HybridSal relational abstracter performs this ap-
proximation by default. It generates the (more precise) nonlinear abstraction
(as described in Figure 4) when invoked using an appropriate command line
flag. Both inf-BMC and k-induction provers rely on satisfiability modulo theory
(SMT) solvers. Most SMT solvers can only reason about linear constraints, and
hence, the ability to generate linear relational abstractions is important. How-
ever, there is significant research effort going on into extending SMT solvers to
handle nonlinear expressions. HybridSal relational abstracter and SAL inf-BMC
have been used to create benchmarks for linear and nonlinear SMT solvers.

Second, Procedure linODEabs can be extended to generate even more pre-
cise nonlinear relational abstractions of linear systems. Let p1, p2, . . . , pk be k
(linear and nonlinear) expressions found by Procedure linODEabs that satisfy
the equation dpi

dt = λipi. Suppose further that there is some λ0 s.t. for each i
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linODEabs(A, b): Input: a pair (A, b), where A ∈ Rn×n, b ∈ Rn×1.
Output: a formula φ over the variables x,x′

1. identify all variables x1, . . . , xk s.t. dxi
dt

= bi where bi ∈ R ∀i
let E be {x

′
i−xi

bi
| i = 1, . . . , k}

2. partition the variables x into y and z s.t. dx
dt

= Ax + b can be rewritten as[
dy
dt
dz
dt

]
=

[
A1 A2

0 0

] [
y
z

]
+

[
b1
b2

]
where A1 ∈ Rn1×n1 , A2 ∈ Rn1×n2 , b1 ∈ Rn1×1, b2 ∈ Rn2×1, and n = n1 + n2

3. set φ to be True
4. let c be a real left eigenvector of matrix A1 and let λ be the corresponding real

eigenvalue, that is, cTA1 = λcT

5. if λ == 0 ∧ cTA2 == 0: set E := E ∪ { c
T (y′−y)

cT b1
}; else: E := E

6. if λ 6= 0: define vector d and real number e as: dT = cTA2/λ and e = (cT b1 +
dT b2)/λ
let p(x) denote the expression cTy+dTz+ e and let p(x′) denote cTy′+dTz′+ e
if λ > 0: set φ := φ∧ [(p(x′) ≤ p(x) < 0)∨(p(x′) ≥ p(x) > 0)∨(p(x′) = p(x) = 0)]
if λ < 0: set φ := φ∧ [(p(x) ≤ p(x′) < 0)∨(p(x) ≥ p(x′) > 0)∨(p(x′) = p(x) = 0)]

7. if there are more than one eigenvectors corresponding to the eigenvalue λ, then
update φ or E by generalizing the above

8. repeat Steps (4)–(7) for each pair (c, λ) of left eigenvalue and eigenvector of A1

9. let c + ıd be a complex left eigenvector of A1 corresponding to eigenvalue α+ ıβ
10. using simple linear equation solving as above, find c1, d1, e1 and e2 s.t. if p1

denotes cTy + c1
Tz + e1 and if p2 denotes dTy + c2

Tz + e2 then

d

dt
(p1) = αp1 − βp2

d

dt
(p2) = βp1 + αp2

let p′1 and p′2 denote the primed versions of p1, p2
11. if α ≤ 0: set φ := φ ∧ (p21 + p22 ≥ p′1

2
+ p′2

2
)

if α ≥ 0: set φ := φ ∧ (p21 + p22 ≤ p′1
2

+ p′2
2
)

12. repeat Steps (9)–(11) for every complex eigenvalue eigenvector pair
13. set φ := φ ∧

∧
e1,e2∈E e1 = e2; return φ

Fig. 4. Algorithm implemented in HybridSal relational abstracter for computing rela-
tional abstractions of linear ordinary differential equations.

λi = niλ0 for some integer ni. Then, we can extend φ by adding the following
relation to it:

pi(x
′)njpj(x)ni = pj(x

′)nipi(x)nj (14)

However, since pi’s are linear or quadratic expressions, the above relations will
be highly nonlinear unless ni’s are small. So, they are not currently generated
by the relational abstracter. It is left for future work to see if good and useful
linear approximations of these highly nonlinear relations can be obtained.
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3.2 hsal2sal: The Relational Abstracter Tool

The HybridSal relational abstracter tool, including the sources, documentation
and examples, is freely available for download [10].

The input to the tool is a file containing a specification of a hybrid system
and safety properties. The HybridSal language naturally extends the SAL lan-
guage by providing syntax for specifying ordinary differential equations. SAL
is a guarded command language for specifying discrete state transition systems
and supports modular specifications using synchronous and asynchronous com-
position operators. The reader is referred to [7] for details. HybridSal inherits all
the language features of SAL. Additionally, HybridSal allows differential equa-
tions to appear in the model as follows: for each real-valued variable x, the user
defines a dummy variable xdot which represents dx

dt . A differential equation can
now be written by assigning to the xdot variable. Assuming two variables x, y,
the syntax is as follows:

guard(x,y) AND guard2(x,x’,y,y’) --> xdot’ = e1; ydot’ = e2

This represents the system of differential equations dx
dt = e1, dydt = e2 with

mode invariant guard(x, y). The semantics of this guarded transition is the
binary relation defined in Equation 13 conjuncted with the binary relation
guard2 (x, x′, y, y′). The semantics of all other constructs in HybridSal match
exactly the semantics of their counterparts in SAL.

Figure 5 contains sketches of two examples of hybrid systems modeled in
HybridSal. The example in Figure 5(left) defines a module SimpleHS with two
real-valued variables x, y. Its dynamics are defined by dx

dt = −y+x, dy
dt = −y−x

with mode invariant y ≥ 0, and by a discrete transition with guard y ≤ 0. The
HybridSal file SimpleHS.hsal also defines two safety properties. The latter one
says that x is always non-negative. This model is analyzed by abstracting it

bin/hsal2hasal examples/SimpleEx.hsal

to create a relational abstraction in a SAL file named examples/SimpleEx.sal,
and then (bounded) model checking the SAL file

sal-inf-bmc -i -d 1 SimpleEx helper

sal-inf-bmc -i -d 1 -l helper SimpleEx correct

The above commands prove the safety property using k-induction: first we prove
a lemma, named helper, using 1-induction and then use the lemma to prove the
main theorem named correct.

The example in Figure 5(right) shows the sketch of a model of the train-gate-
controller example in HybridSal. All continuous dynamics are moved into one
module (named timeElapse). The train, gate and controller modules define
the state machines and are pure SAL modules. The observer module is also a
pure SAL module and its job is to enforce synchronization between modules on
events. The final system is a complex composition of the base modules.

The above two examples, as well as, several other simple examples are pro-
vided in the HybridSal distribution to help users understand the syntax and
working of the relational abstracter. A notable (nontrivial) example in the dis-
tribution is a hybrid model of an automobile’s automatic transmission from [2].
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SimpleEx: CONTEXT = BEGIN

SimpleHS: MODULE = BEGIN

LOCAL x,y,xdot,ydot:REAL

INITIALIZATION

x = 1; y IN {z:REAL| z <= 2}
TRANSITION

[ y >= 0 AND y’ >= 0 -->

xdot’ = -y + x ;

ydot’ = -y - x

[] y <= 0 --> x’ = 1; y’ = 2]
END;

helper: LEMMA SimpleHS |-

G(0.9239*x >= 0.3827*y);

correct : THEOREM

SimpleHS |- G(x >= 0);

END

TGC: CONTEXT = BEGIN

Mode: TYPE = {s1, s2, s3, s4};
timeElapse: MODULE = BEGIN

variable declarations

INITIALIZATION x = 0; y = 0; z = 0

TRANSITION

[mode invariants -->

--> xdot’ = 1; ydot’ = 1; zdot’ = 1]
END;

train: MODULE = . . .
gate: MODULE = . . .
controller: MODULE = . . .
observer: MODULE = . . .
system: MODULE = (observer || (train []

gate [] controller [] timeElapse));

correct: THEOREM system |- G ( ... ) ;

END

Fig. 5. Modeling hybrid systems in HybridSal: A few examples.

Users have to separately download and install SAL model checkers if they wish
to analyze the output SAL files using k-induction or infinite BMC.

The HybridSal relational abstracter constructs abstractions compositionally;
i.e., it works on each mode (each system of differential equations) separately.
It just performs some simple linear algebraic manipulations and is therefore
very fast. The bottleneck step in our tool chain is the inf-BMC and k-induction
step, which is orders of magnitude slower than the abstraction step (we have
not tried abstract interpretation yet). The performance of HybridSal matches
the performance reported in our earlier paper [8] on the navigation benchmarks
(which are included with the HybridSal distribution). In [8] we had used many
different techniques (not all completely automated at that time) to construct
the relational abstraction.

3.3 hsal2sal: Strengths and Limitations

The HybridSal relational abstracter is a tool for verifying hybrid systems. The
other common tools for hybrid system verification consist of
(a) tools that iteratively compute an overapproximation of the reachable states [4],
(b) tools that directly search for correctness certificates (such as inductive in-
variants or Lyapunov function) [6, 9], or
(c) tools that compute an abstraction and then analyze the abstraction [5, 1, 3].
Our relational abstraction tool falls in category (c), but unlike all other abstrac-
tion tools, it does not abstract the state space, but abstracts only the transition
relation.

The key benefit of relational abstraction is that it cleanly separates reason-
ing on continuous dynamics (where we use control theory or systems theory)
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and reasoning on discrete state transition systems (where we use formal meth-
ods.) Concepts such as Lyapunov functions or inductive invariants (aka barrier
certificates) for continuous systems are used to construct very precise relational
abstractions, and formal methods is used to verify the abstracted system. In fact,
for several classes of simple continuous dynamical systems, lossless relational ab-
stractions can be constructed, and hence all incompleteness in verification then
comes from incompleteness of verification of infinite state transition systems.

We note that our tool is the first in its space and is still under active devel-
opment. We list below some of its shortcomings and ways in which we plan to
address them in the future.

Precision. While relational abstractions are more precise than purely qualita-
tive abstractions, there is occassionally a need for more precise abstraction.
There are several ways forward. One approach is to enhance relational ab-
stractions with qualitative abstractions. There are examples where the com-
bination gives a much better quality abstraction than either components.
Also, more precise relational abstractions can be potentially generated by
using mode invariants.

Numerical Issues. The computation of relational abstraction is performed us-
ing floating point arithmetic computation. It is well known that floating
point computations can lead to unsound results. In future versions of the
tool, numerical errors due to floating point arithmetic need to be handled
properly.

Nonlinearity. Our tool is restricted to handling linear differential equations. It
can not handle nonlinear differential equations presently. There is a need to
develop support for nonlinear differential equations to analyze more complex
hybrid models.

We remark here that scalability is not an issue for computing relational ab-
stractions. It can be shown that relational abstractions can be computed in
polynomial (cubic) time. The process of computing the abstraction is generally
fast. It is the verification of the abstraction, discussed more in the next section,
that causes scalability concerns.

4 The SAL Model Checking Tools

The SAL model generated by the relational abstraction tool is analyzed using
the SAL model checkers. In this section, we briefly describe the tools and their
available options for analyzing the output of the relational abstraction tool.

Recall that the relational abstraction model has the same state space as the
original model. Only the transitions are abstracted. Hence, the SAL model is
an infinite state system. Standard model checkers, which can handle only finite
state systems, can not be used to verify the abstract models.

The SAL tool suite provides two techniques for verifying infinite state sys-
tems.
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Infinite bounded model checking. Infinite bounded model checking is used
to verify the safety property upto a fixed finite depth. If the safety property
is not true, and there is a violation of the property that is exhibited by a
trajectory making at most d discrete mode switches, then preforming infinite
bounded model checking with depth d will discover the violation. However,
infinite bounded model checking can not, by itself, prove the safety property.
It can only show that there are no violations of the safety property for
certain bounded behaviors. The tool sal-inf-bmc is an infinite bounded
model checker for SAL.

k-induction. A safety property can be proved of a model using k-induction.
The principle of k-induction is a generalization of the standard 1-step induc-
tion. A successful proof using k-induction can demonstrate that there is no
violation of the safety property for any arbitrary depth. With the -i flag,
the tool sal-inf-bmc -i becomes a k-induction prover.

4.1 sal-inf-bmc: Limitations of SAL Verification Tools

There are certain limitations of the SAL verification tools.

Scalability. Relational abstraction generates verification problem on a discrete,
infinite state space system, which are difficult to verify automatically. In
this project, we have used k-induction and infinite bounded model checking.
The scalability of these techniques is limited since the SMT formulas gen-
erated (from the SAL model by the infinite bounded model checker or the
k-induction prover) can be very large. The use of k-induction can require
the need for auxiliary lemmas. In the future, we plan to develop dedicated
methods for generating invariants and for performing abstract interpretation
that are tailored to analyzing relational abstractions.

Expressiveness. The approach of verification based on abstraction and model
checking can only be used to verification of safety properties. While safety
properties constitute the majority of the requirements, there are other prop-
erties (liveness) that are some times useful, which presently can not be an-
alyzed using our approach.

5 Drivetrain Case Study

In this section, we present the HybridSAL model of the drivetrain case study. The
drivetrain was originally modeled in Modelica. The Modelica file was translated
by hand into a HybridSAL model shown in Figure 6 and Figure 7.

We briefly describe the HybridSAL models in Figure 6 and Figure 7. First,
note that the drivetrain system is modeled as a composition of two submodules,
namely plant and control. This is captured in Figure 7 as:

system: MODULE = plant || control ;

15



Figure 6 contains the description of module plant and Figure 7 contains the
description of module control.

The state space of the plant module is described by four real-valued vari-
ables, f5, f7, f17 and e11. Note that, in the original Modelica model, these vari-
ables had appeared within the derivative (der) operator. All the other variables
in the Modelica model were eliminated during the translation to HybridSAL. The
plant module has as input the variable ratio. The control module outputs
(writes) ratio and the plant module inputs (reads) it. Similarly, the control

module reads the value of f5 and f17, whereas the plant module writes it.
After the variable declarations, a HybridSAL module has two other important
declarations: Initialization and Transition sections. All state variables are
initialized to zero thus,

INITIALIZATION f5 = 0; f7 = 0; e11 = 0; f17 = 0

In the Transition section, we give one set of ordinary differential equations
(ODEs) for each mode of the system. A set of ODEs consists of a differential
equation for each of the four variables. Since ratio can take six different values,
there are six modes and six sets of ODEs in the module Plant. The formula
before the --> in a guarded command is a guard that specifies what condition
must hold at the beginning (unprimed variables) and at the end (primed vari-
ables) of the transition. For example, the differential equations describing the
plant when ratio is 1/4 is written as

ratio = 1/4 AND (ratio’ = 1/3 OR ratio’ = 1) -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 1/4 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11* 10000/40

The guard captures the fact that if ratio is 1/4 now, it will either be 1/3 or 1 in
the next step. This forces a transition to necessarily change ratio in each step.

The control module is shown in Figure 7. It is a purely discrete state tran-
sition system – it involves no differential equations. The logic for changing the
value of ratio is self evident from Figure 7.

It is also possible to model a time triggered version of the plant and con-
trol. This is shown in Figure 8. The only difference between the timed and
untimed model is in the guards of plant. In the untimed version, we set the
guards so that the value of ratio changes in every single step. In the timed ver-
sion, we can not force the value of ratio to change in every single step (since it
may not depending on the sampling period), and hence we simplify the guards.

The HybridSAL model(s) can be abstracted using the relational abstraction
tools. The usage of these tools is described in Appendix A. The relational ab-
straction tool eliminates the differential equations and outputs a SAL file that
contains no differential equations. The following two SAL tools can be used to
analyze the generated abstract file.

sal-inf-bmc: SAL infinite bounded model checker
sal-inf-bmc -i: SAL k-induction prover
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We note that these two tools use Yices as their background satisfiability modulo
theory (SMT) constraint solver.

6 Conclusion

We presented the three components of the HybridSal relational abstraction ver-
ification tool:
(a) A translator that converts Modelica models into HybridSal models
(b) A relational abstraction tool that converts a HybridSal model into a SAL
model and
(c) An infinite bounded model checking based verification tool for analyzing in-
finite state SAL models.
Each of these three components can be used independently. However, our ver-
ification tool internally composes these three parts and directly verifies safety
properties of Modelica models. It currently runs on all platforms, Linux, Mac,
and Windows.
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NAME

bin/hsal2hasal - construct relational abstraction of

HybridSAL models

SYNOPSIS

bin/hasal [OPTION]... [FILE]

DESCRIPTION

Construct a relational abstraction of the model in [FILE].

Create a new SAL file containing the abstract model.

Input file is expected to be in HybridSAL (.hsal) syntax,

or HybridSAL’s XML representation (.hxml).

The new file will have the same name as [FILE], but

a different extension, .sal

Options include:

-c, --copyguard

Explicitly handle the guards in the continuous dynamics

as state invariants

-n, --nonlinear

Create a nonlinear abstract model

Note that freely available model checkers are unable

to handle nonlinear models, hence this option is

useful for research purposes only

-t <T>, --timed <T>

Create a timed relational abstraction assuming that

the controller is run every <T> time units.

<T> should be a number (such as, 0.01)

-o, --optimize

Create an optimized relational abstraction.

Certain transient’s are unsoundly eliminated from the

abstract SAL model to improve performance of the model

checkers on the generated SAL model

AUTHOR

Written by Ashish Tiwari

REPORTING BUGS

Report bugs to ashish_dot_tiwari_at_sri_dot_com

COPYRIGHT

Copyright 2011 Ashish Tiwari, SRI International.

------------------------------------------------------------------
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NAME

hybridsal2xml - convert hybridsal into XML format

SYNOPSIS

hybridsal2xml [OPTION]... [FILE]

DESCRIPTION

Parse the HybridSAL file [FILE] (with .hsal extension) and

create a new file containing its XML representation.

The new file will have the same name as [FILE], but

a different extension, namely .hxml.

Options include:

-o <filename>

Save the XML in file <filename>

AUTHOR

Written by Ashish Tiwari

REPORTING BUGS

Report bugs to ashish_dot_tiwari_at_sri_dot_com

COPYRIGHT

Copyright 2011 Ashish Tiwari, SRI International.

------------------------------------------------------------------

NAME

bin/hxml2hsal - convert hybridsal XML to standard notation

SYNOPSIS

bin/hxml2hsal [FILE]

DESCRIPTION

Pretty print the XML file [FILE] as a HybridSAL file.

The input is assumed to be a file with extension .hxml

The output is written in a new file that has the same

name as [FILE], but a different extension, namely .hsal.

This is the ‘‘inverse’’ of hybridsal2xml tool.

AUTHOR

Written by Ashish Tiwari

REPORTING BUGS
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Report bugs to ashish_dot_tiwari_at_sri_dot_com

COPYRIGHT

Copyright 2011 Ashish Tiwari, SRI International.

------------------------------------------------------------------

NAME

bin/hasal2sal - Extract SAL from HybridSal

SYNOPSIS

bin/hasal2sal [FILE]

DESCRIPTION

Extract the discrete part of the transition system

contained in the hybrid abstract HybridSAL file [FILE],

with .hasal extension, and pretty print it.

The input is assumed to be a file with extension .hasal

The output is written in a new file that has the same

name as [FILE], but a different extension, namely .sal.

There is no analysis performed; it is a purely

syntactic extraction.

AUTHOR

Written by Ashish Tiwari

REPORTING BUGS

Report bugs to ashish_dot_tiwari_at_sri_dot_com

COPYRIGHT

Copyright 2011 Ashish Tiwari, SRI International.

------------------------------------------------------------------

modelica2hsal -- a converter from Modelica to HybridSal

NAME

bin/modelica2hsal - convert Modelica XML to Hybridsal

SYNOPSIS

bin/modelica2hsal <Modelica.xml> [<context-property-file>]

[--addTime|--removeTime]

DESCRIPTION

Converts Modelica model in <Modelica.xml> to HybridSal.

The optional argument <context-property-file> is a file
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containing the context model and property: in json or xml.

The optional argument --addTime assumes time as an

implicitly defined variable.

The optional argument --removeTime removes the time

variable and all equations containing time before

performing the translation to HybridSal.

AUTHOR

Written by Ashish Tiwari

COPYRIGHT

Copyright 2011 Ashish Tiwari, SRI International.

------------------------------------------------------------------
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drivetrain: CONTEXT =

BEGIN

plant: MODULE =

BEGIN

OUTPUT f5, f7, e11, f17:REAL

INPUT ratio: REAL

INITIALIZATION

f5 = 0; f7 = 0; e11 = 0; f17 = 0

TRANSITION

[

ratio = 1/4 AND (ratio’ = 1/3 OR ratio’ = 1) -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 1/4 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11* 10000/40

[]

ratio = 1/3 AND (ratio’ = 1/3 OR ratio’ = 3/7) -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 1/3 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11* 10000/30

[]

ratio = 3/7 AND (ratio’ = 1/3 OR ratio’ = 3/5) -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 3/7 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11*10000* 3/70

[]

ratio = 3/5 AND (ratio’ = 3/7 OR ratio’ = 1) -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 3/5 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11*10000* 3/50

[]

ratio = 1 AND (ratio’ = 3/5 OR ratio’ = 7/5) -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 1 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11* 10000/10

[]

ratio = 7/5 AND ratio’ = 1 -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 7/5 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11*10000* 7/50

]

END;

Fig. 6. HybridSAL model of the drivetrain case study. The plant module describes the
dynamics of the physical plant. The rest of the HybridSAL model is shown in Figure 7.
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control: MODULE =

BEGIN

OUTPUT ratio: REAL

LOCAL G1, G2, G3, G4, G5, G6: REAL

LOCAL G2Low, G3Low, G4Low, G5Low, G6Low: REAL

LOCAL G1High, G2High, G3High, G4High, G5High, G6High: REAL

INPUT f17, f5: REAL

LOCAL OutRPM: REAL

INITIALIZATION ratio = 1/4

DEFINITION G1 = 1/4; G2 = 1/3; G3 = 3/7; G4 = 3/5; G5 = 1; G6 = 7/5;

G2Low = G1High; G3Low = G2High;

G4Low = G3High; G5Low = G4High;

G6Low = G5High;

G1High = G1 * 1800; G2High = G2 * 1800;

G3High = G3 * 1800; G4High = G4 * 1800;

G5High = G5 * 1800; G6High = G6 * 1800;

OutRPM = f5 * 16

TRANSITION

[
OutRPM’ < G1High --> ratio’ = G1

[]

OutRPM’ >= G2Low AND OutRPM’ < G2High --> ratio’ = G2

[]

OutRPM’ >= G3Low AND OutRPM’ < G3High --> ratio’ = G3

[]

OutRPM’ >= G4Low AND OutRPM’ < G4High --> ratio’ = G4

[]

OutRPM’ >= G5Low AND OutRPM’ < G5High --> ratio’ = G5

[]

OutRPM’ >= G6Low AND OutRPM’ < G6High --> ratio’ = G6

[]

ELSE --> ratio’ = 1

]

END;

system:MODULE = plant || control ;

correct : THEOREM system |- G( f7 >= 0 OR f17 >= 0);

reach : THEOREM system |- G( ratio <= 1/2 );

END

Fig. 7. HybridSAL model of the drivetrain case study. The control module describes
the logic for switching between the different modes of the plant. The first part of the
HybridSAL model is shown in Figure 6. We have also shown some (dummy) properties.
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timedDrivetrain: CONTEXT =

BEGIN

plant: MODULE =

BEGIN

OUTPUT f5, f7, e11, f17:REAL

INPUT ratio: REAL

INITIALIZATION

f5 = 0; f7 = 0; e11 = 0; f17 = 0

TRANSITION

[

ratio = 1/4 -->

f5dot’ = e11*10000/2400 - f5/20 ;

f7dot’ = 40 + 20 * f17 - 20 * f7 ;

e11dot’ = f17 * 1000 * 1/4 - f5 * 10000/6 ;

f17dot’ = 100*f7 - 100*f17 - e11* 10000/40

[]

ratio = 1/3 --> . . . same as before

[]

ratio = 3/7 --> . . . same as before

[]

ratio = 3/5 --> . . . same as before

[]

ratio = 1 --> . . . same as before

[]

ratio = 7/5 --> . . . same as before

]

END;

control: MODULE =

BEGIN

same as before

]

END;

system:MODULE = plant || control ; END

Fig. 8. HybridSAL model of the time triggered implementation of the drivetrain case
study. But for the guards of plant, this model is identical to the model in Figure 6.
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