
Delivered to the Government in Accordance with Contract FA8650-10-C-7084

METAII - MIT Rhodes+Ross

Software Code Description– 9/28/11 - Donna Rhodes. Adam Ross, and Matt Fitzgerald

This document presents a breakdown of the VASC process into the relevant functions of the VASC code base, with short

descriptions on how to use the complicated functions.

1. Set up data for Epoch-Era Analysis

The functions that set up the MATLAB workspace for EEA are located in the Data and Data Loaders folder. These functions are

highly specialized for whatever form the data input takes, and thus are not generalizable between case studies. When adapting

VASC to your own case, pay special attention to creating these files to process your own data!

Space Tug

The key file here is dataLoader.m. The other files in the Data and Data Loaders folder are the underlying input data (mat, csv,

and xls files) and other functions that process them and are called in dataLoader, which assembles much of the necessary

information in the MATLAB workspace.

In order, dataLoader does:

1) calculates attributes and costs for each design in each context (via designCalculator)

2) calculates multi-attribute utility for each design in each epoch (spaceTugMAUcalc)

3) creates (design x epoch) matrices for cost and MAU

4) calculates (design x epoch) Fuzzy Pareto Numbers (via calcFuzzyParetoNumbers)

5) loads the transition matrices (with commented out code for creating them originally)

dataLoader is a script and therefore has no inputs, but calls on two data structures to do that work: tradespaceData.csv (to create

the full factorial design vector enumeration) and spaceTugPrefSets.mat (to get the utility curves needed to evaluate MAU).

These are the sorts of inputs and outputs you should expect to code for if applying VASC to a multi-attribute tradespace study.

Other structures may prove relevant for different types of case studies, but the key outputs here are the (design x epoch) matrices

that form the inputs to most of the rest of VASC.

X-TOS

This case also has a dataLoader.m file, but is obviously different. In this case, the data for X-TOS comes not in the form of

design variables and preference curves, but rather pre-calculated single- and multi-attribute utilities, and dataLoader is a function

that calls these presaved data files and concatenates them into the (design x epoch) matrices and specifies a few other useful

constants (number of designs/rules/epochs)

2. Define Changeability Rule Usage Strategies

This step is handled in the Strategies folder. Each function in these folders determines the selected transition path (if any) for

each design in each epoch, reading in the transition matrices and any other relevant information necessary to make that

judgement. For example, the maxU (maximize utility) strategy functions also take MAU as an input, along with acceptable

cost/time thresholds for the transition. The outputs of these functions are three (design x epoch) matrices: one for the target

design after transitioning (endStates), a cell array for the change mechanism path taken (rulesExecuted), and another for the total

[$ time] cost of the transition (transCost).

The general information flow inside these functions is:

1) determine potential end states from transition matrices

2) rank and sort end states via decision criteria

3) test all potential paths for the best end state, choose least expensive

4) if too expensive, proceed to next best design

5) if all transitions are too expensive, signifies no transition (endState==0)

Space Tug

There are 3 strategies for space tug: maximize utility, maximize efficiency, and survive (change only if design is infeasible in

current epoch). A fourth strategy (maximize profit) is included in the era analysis but NOT in this phase, as profits depend on

epoch lengths which are not defined until an era is created.

X-TOS

Because of the nature of X-TOS data set, which includes only designs always feasible, the survive strategy is omitted here.

3. Multi-epoch Changeability Analysis

Delivered to the Government in Accordance with Contract FA8650-10-C-7084

Having populated the workspace with the basic EEA constructs and the strategy results, we now have all of the data necessary for

performing multi-epoch analysis. A variety of functions were created to assist this process, and they are located in the Helper

Functions folder. A sample:

 calcFPS(endStates,fuzzyParetoNumber) calculates the fuzzy pareto shift for each design in each epoch

 FPSdistrPlot(FPS,designList) then plots the above data in distribution form for a set of designs of interest specified by

the second input

 calcEffFPN(FPN,endStates) takes the FPN matrix and replaces the values for design-epoch pairs in which a transition

occurred with the updated FPN. This can be summed horizontally (across epochs) to calculate effective (fuzzy) pareto

traces

 ruleExecutionCounter(rulesExecuted,numRules) tallies the total number of transitions using each change mechanism,

which can be used to calculate a design’s likelihood of using a rule at any given epoch switch (via ruleLikelihood.m)

4. Era-level Changeability Analysis

The Era folder contains functions that construct a sample era and then, given an initial design, model the strategic changes

performed by the system. They also record any era-level performance metrics deemed of interest. Each function call runs ONE

era, so in practical use these functions are called in loops to sample thousands of eras.

Space Tug

The Era Simulation folder contains 4 functions, one for each strategy. These are slightly unusual in that they do not take the end

states determined by the strategy as inputs. That is because Space Tug has a quirk where the stakeholder knows the length of

each epoch as it begins (since the epochs are modeled as contracts), and this knowledge affects the choice of transition. Thus,

each of the 4 functions is the same except for the section which determines the transition of choice similarly to the Strategy

functions, except making sure that the transition time does not exceed epoch length. Note the large number of outputted metrics:

Revenue, Cost, Transition Cost, Rules Used, Utility Months, Best FPN, Worst FPN, Average FPN, Average FPN not counting

infeasible epochs, Met/Missed contracts. All of these can then be compared between designs of interest while performing era

analysis.

X-TOS

The era functions for X-TOS are simpler: they simply take an initial design and the predetermined strategic transitions as inputs

and then walk through the constructed era. This is more typical of what you would expect a VASC era simulator to look like.

There are 3 functions in the Era Modeling folder which differ in the way they determine epoch length: geometric distribution,

poisson distribution, and constant duration. These are included simply to show how you can add the variable epoch length

wrinkle quickly and effectively to VASC.

Demo Scripts

Each case study comes with a set of demo scripts. These are labeled by strategy and perform a basic start-to-finish VASC

process for the given strategy. View these as outlines for applying all of the above functions or for constructing your own case

studies.

Other Helper Functions

Not all of the helper functions were mentioned above; the remainder are listed here with their basic function for your use:

 bestParetoTraceFinder – given FPN and a fuzzy threshold, this function finds all of the designs with the BEST fNPT

 caleFOD – calculated filtered outdegree for each design

 cellSpy – makes a spy() plot, but works on cell arrays: useful for visualizing the collapsed transition matrices

 gen_pareto_set – finds the pareto set when given a list of designs with their objective functions. Can do fuzzy pareto

sets as well.

 plotFNPT / plot FOD – makes the fNPT/FOD by design number plots useful for identifying designs of interest

 ruleCollapse2 – this collapses transition rules saved in Cost{rule} cell arrays into a single cell array. It also evaluates

multi-arc transitions. designPathTool is a subfunction used to fully enumerate all possible transition paths.

 transitionAnalysis – this function is a work in progress, but it analyzes the end states determined by a strategy and

outputs sets of designs with different characteristics. It will tell you what designs are ever targeted by a transition, what

designs never become infeasible when considering changeability, and what designs never transition. It will also find

“implementation families”, which we define as steady-state loops of designs when applying a particular strategy. That

is, if three designs do nothing other than stay the same or change to one of the other two, those three are in the same

“implementation family” because once you transition into the family, you won’t leave. Future SEAri research will

probably be spent looking into the properties of these.

