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1.0 SUMMARY 
 
The primary objective of our effort is to develop a fundamental theory to quantify the 
inherent uncertainties and risks in complex system design and development processes. 
These theoretical developments will help enable the achievement of the META goal of 
devising, implementing, and demonstrating in practice a radically different approach to 
the design, integration/manufacturing, and verification of complex systems. Our approach 
to meeting this objective is: to adapt the entropy concepts of information theory to create 
a metric for system complexity; to apply estimation theory to characterize inherent 
uncertainty in system development processes; and to  utilize this theoretical base to 
develop efficient methods for resource allocation so as to manage uncertainty and 
mitigate risk in complex system developments.  
 
Our specific innovative claims for this project are as follows: 
 

1. Viewing system development as a problem of Bayesian estimation leads to a     
theoretical framework for complex system development. 
2. Quantifying complexity in terms of information theoretic concepts permits the 
treatment of the complexity metric with the tools of estimation theory. This 
enables a systematic approach to quantitative modeling of system development as 
a  resource investment procedure in the presence of uncertainty. 
3. A stochastic model for system development facilitates quantification of the 
uncertainty reduction that is necessary for success and can be used as a tool to 
monitor the actual development process. 
4.  Our proposed theoretical framework for uncertainty quantification provides the 
bedrock upon which the methods and tools, enabling orders of magnitude 
improvement in complex system developments, can be built. 

 
In this research we achieved our objectives by defining a complexity metric, quantifying 
that complexity, and developing a sensitivity analysis procedure for directing resource 
allocation in complexity reduction exercises.  
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2.0 INTRODUCTION 
 
Over the course of a successful system development many large initial uncertainties are 
systematically reduced, until great certainty is achieved when the actual system is 
realized.  Viewed in this manner the system development process becomes a problem of 
Bayesian estimation. All decision processes along the way are re-cast as discovery 
procedures by which models and tests are used, in concert, to conduct a series of 
observations of the key parameters. A Bayesian characterization of key design parameters 
is used to represent the level of uncertainty in each parameter at any point during the 
development process. 
 
Our Bayesian estimation viewpoint provides a natural mathematical/computational 
framework for integrating statistical and deterministic analysis methods. The overall 
framework encapsulates uncertainty assessment methods, such as Markov chain Monte 
Carlo methods for statistical inference, Monte Carlo sampling for forward propagation of 
uncertainties, global sensitivity analysis for identifying key contributors to total variance 
in overall system metrics, and stochastic optimization for decision under uncertainty. By 
viewing the process as part of an estimation problem, we can exploit many deterministic 
design methods, such as system decomposition, optimization, multifidelity approaches to 

 uncertainty, reduced order modeling, etc. modeling
 
Figure 1 depicts how an evolving estimate of the system---which comprises both the 
system state and its current level of uncertainty---is continually fed by data from 
experiments and simulations as the decision process advances. The evolving system 
estimate in turn feeds information back to aid in experimental design as well as in 
development and management of multifidelity models. For example, model parameter 
estimates may be updated as new design or test data are assimilated. Propagation of 
uncertainties in parameters through to outputs of interest might indicate high levels of 
uncertainties in model outputs that require additional experiments or model refinement. 
Sensitivity analysis indicates important sources of uncertainty and thus specific 
components of models or parameters that require higher fidelity. The 
optimization/control task provides specific goals that also inform model selection and 
parameterization. Evolution of the system through the elements depicted around the 
cylinder in the figure typically repeats many times over the duration of the project. As the 
probabilistic estimate of the system state evolves, it contributes towards the different 
stages of the decision process. These decisions may include resource allocations—
perhaps  to experiments, or to improving physical modeling, or to improved simulation 
model capabilities, or to hardware acquisitions—which in turn impact the estimation 
process. 
 
The rest of this report proceeds as follows.  Section 2 presents our project objectives and 
our approach to meeting them.  Section 3 develops our complexity definition and our 
complexity metric.  Section 4 develops our sensitivity analysis methodology for resource 
allocation.  Section 5 demonstrates our methodology on an RLC circuit.  Section 6 
describes the application of our methodology to a satellite system design program.  
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Section 7 describes the application of our methodology to a notional infantry fighting 
vehicle.  Section 8 develops theoretical material related to model inadequacy.  Section 9 
discusses the scalability of our methods.  Section 10 discusses future work and Section 11 
presents our conclusions. 
 

 
 

Figure 1: Experimental and Simulation Data Combination  
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 

In this section we discuss our complexity metric theoretical development, our estimation 
procedure for the complexity metric, and our development of a sensitivity analysis 
procedure for resource allocation purposes. 
 
3
 
.1  Complexity Metric Theoretical Development 

In the following subsections we present our definition of complexity and our complexity 
metric, background material on information entropy, a discussion of quantities of interest, 
and circuit based examples that reveal the uses and interpretation of the metric. 
 
3.1.1 Definition of Complexity and Our Complexity Metric. To successfully manage 
complexity throughout system design, development, and deployment, a proper definition 
of complexity is essential. We define complexity as the potential of a system to exhibit 
unexpected behavior in the quantities of interest, regardless of whether or not that 
behavior is detrimental to achieving system requirements. Complexity defined in this 
manner captures the notion of emergent behavior and nonlinear interaction phenomena 
characteristic of what are typically termed complex systems. This definition also permits 
a system that does not necessarily exhibit complex behavior to still be defined as complex 
if there is potential for such behavior. This potential may be measured in terms of 
unknown possible states that quantities of interest may lie in (which is essentially 
emergent behavior).  Here, quantities of interest refer to anything a decision-maker is 
interested in and thus, vary by application, level of abstraction being considered, the 
current stage in the development process, etc.  These could be parameters that define the 
system dynamics and performance, the complete set of state variables for the system, or 
even cost and schedule information.  
 
3.1.2 Complexity Metric. We claim that an appropriate metric for measuring complexity 
as defined above can be defined on the basis of information entropy. The reason for this 
is that we are essentially referring to how uncertain we are about the values our quantities 
of interest may take, which leads to the notion of emergent behavior. Specifically, our 
complexity metric is defined as 
 
 C(Q) = exp(h(Q)),  (1) 
 
where Q is the joint distribution of the quantities of interest and h(Q) is the differential 
entropy of Q. This metric takes values on (0,∞). As we learn more about our quantities of 
interest, the complexity metric tends to zero.  
 
3.1.3  Background Material on Information Entropy. Here we present some brief 
background material on information entropy.  For the discrete case, consider a random 
variable Y with probability mass function p(y). The entropy of Y is then defined as  
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 H(Y) = − p(yi)log p(yi),i∑  (2) 
 
where y1,y2,… are the values of y such that p(y) does not equal zero. For the continuous 
case, consider a random variable X with probability density function fX(x). The 
differential entropy of X is then defined as 
 
 h(X) = − fX (x)log fX (x)dx,

ΩX
∫  (3) 

 
where ΩX is the support of X. Examples of the information entropy for typical 
distributions are as follows: 
 

Normal Distribution: h(N(μ,σ 2)) =
1
2

ln(2πeσ 2), (4) 

 
Uniform Distribution: h(U[a,b]) = ln(b − a), (5) 
 

Triangular Distribution: h(T(a,b,c)) =
1
2

+ ln b − a
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ,  (6) 

 
where μ is the mean and σ2 is the variance of the normal distribution, a is the minimum 
and b is the maximum of the uniform distribution, and a is the minimum, b is the 
maximum, and c is the mode of the triangular distribution. 
    
3.1.4 Examples of Complexity Calculations. To demonstrate how the metric is 
calculated and to build intuition as to how to interpret results, we have computed the 
metric for several cases of the adder circuit shown in Figure 2. 
 

 
Figure 2: Adder Circuit 

 
 
Here voltages V1 and V2 are input, voltage V0 is output, and R is resistance. By 
superposition, we have 
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V0 =
1
2

V1 +
1
2

V2.  (

 we assume V1~U[0,5]V, V2~U[0,5]V, and V1 and V2 are independent, then 
0~T(0,5,2.5). Given this, we will consider three cases where we look at different 

 system.  
 V0; 

ntity of 
terest is V0, is represented in Figure 3. 

Figure 3: System for Case 1 

ere we know that V1 and V2 are independent and uniform  distributed between 0 and 5 
olts, thus, V0~T(0,5,2.5)V. Since V0 is our quantity of interest, we estimate the 

its of 

t and our 
uantities of interest are V0 and V1, is represented in Figure 4.  Here, since we know 

. We 
, 

ats. 

7) 

 
 
If
V
quantities of interest and have differing knowledge of the inner workings of the
The cases are: 1) we know the component is an adder and our quantity of interest is
2) we know nothing about the component and our quantities of interest are V0 and V1; 3) 
we know the component is an adder and our quantities of interest are V0 and V1.  
 
Case 1. The first case, where we know the component is an adder and our qua
in
 

 

 
H
v

ly

complexity of the system by estimating the entropy of V0.  We do this using Equation 5 
and Equation 1, which yields a system complexity of 4 nats, where nats are the un
entropy when the natural logarithm is used in the entropy calculation. 
 
Case 2. The second case, where we know nothing about the componen
q
nothing about the component, we assume that V1, V2, and V0 are all independent
know that V1 and V2 are independent and uniformly distributed between 0 and 5 volts
and we assume that V0~T(0,5,2.5)V, which perhaps we ascertained through 
experimentation. Since our quantities of interest are V0 and V1, we must estimate the 
entropy of their joint distribution. This results in a system complexity of 20 n
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Figure 4: System for Case 2 

 
Case 3. The third case, where we know the component is an adder and our quantities of 
interest are V0 and V1, is represented as in Figure 4, however now we know the 
component is an adder circuit. Here we know that V1 and V2 are independent and 
uniformly distributed between 0 and 5 volts, thus, V0~T(0,5,2.5)V. Since our quantities 
of interest are V0 and V1, we must estimate the entropy of their joint distribution. In this 
case, the system complexity is 12 nats.  This result and the results from the other cases 
are discussed in the following subsection. 
 
3.1.5 Adder Circuit Example Discussion. In the case where we knew everything about 
the system and only cared about V0 (case 1), our complexity was the smallest. When we 
knew everything about the system but cared about V0 and V1 (case 3), our complexity 
was larger than when we cared about just V0 alone. When we knew the least information 
about our system (case 2), our complexity was the largest. Clearly the choice of the 
quantities of interest impacts the complexity of the system. Also, the more we know 
about a component, the smaller its entropy and hence complexity in terms of the 
quantities of interest. This is the result of the following property of information entropy  
 
 h(X,Y ) ≤ h(X ) + h(Y ), (8) 
 
where X and Y are random variables. Here we have equality only when X and Y are 
independent. In the adder case, between case 2 and case 3 we learned the component was 
an adder, and thus learned about some dependence between V0 and V1. This dependence 
reduced the entropy in their joint distribution, and thus the complexity in terms of those 
quantities of interest. 
 
3.1.6 Computation of the Complexity Metric. The computation of our complexity 
metric follows the procedure shown in Figure 5.  
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Figure 5: Complexity Metric Computation Procedure 

The overall process is to identify the quantities of interest for a particular system and then 
identify all of the factors of the system that impact the quantities of interest. Once this is 
complete, uncertainty information is identified for each system factor.  This information 
may come from historical data, expert opinion, simulation exercises, etc.  With this 
information, maximum entropy distributions are computed following Cover and Thomas 
[1]. The general form of the maximum entropy optimization problem is presented in 
Figure 6. 
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Figure 6: Maximum Entropy Optimization Problem Solution 

 
Once maximum entropy distributions have been constructed, the next step is sampling 
from each system factor distribution. For this we first sample uniformly using 
quasirandom sequences and them employ an empirical inverse cumulative distribution 
function (CDF) method for converting uniform samples into samples from the maximum 
entropy distributions. Figure 7 presents a comparison of samples from two uniform 
random variables, factor 1 and factor 2, using a standard pseudorandom number approach 
(left) and a quasirandom sequence (right).  For high dimensional problems, quasirandom 
sequences tend to have better convergence properties than pseudorandom numbers. The 
error convergence rate for Monte Carlo integration using pseudorandom numbers is 
O(1 / N ) , whereas it is O  for quasirandom numbers. ((log N)s / N)
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Figure 7: Comparison of Uniform Pseudorandom and Quasirandom Samples 

 
Once uniform samples have been obtained, the empirical CDF method shown in Figure 8 
is used to obtain samples of the maximum entropy distributions. In this figure, u is a a 
uniform sample and the resulting x is a sample form the desired distribution. The CDF for 
the maximum entropy distributions is arrived at empirically by discretizing the maximum 
entropy probability density functions. 
 

 
Figure 8: Cumulative Distribution Function Method for Sample Generation 

 
Once samples of the system factors have been obtained, Monte Carlo simulation may be 
used to obtain samples of the quantities of interest. Following this, we estimate the joint 
distribution of the quantities of interest using kernel density estimation techniques as 
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shown for one-dimension in Figure 9, where the red dashed lines are kernel density 
functions that are used to estimated the probability density function given by the blue 
line.  
 

 
Figure 9: Notional Kernel Density Estimation of a Probability Density Function 

 
Once we have estimated the joint distribution of our quantities of interest, we compute 
the entropy using the method shown in Figure 10. 
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Figure 10: Entropy Estimation Method 

Once the entropy has been estimated the exponential of it is taken to yield an estimate of 
the system complexity. 
 
3.2 Resource Allocation 
 
Having defined complexity and a metric for estimating it for a given system, the question 
arises regarding what to do when system complexity is too high. That is, our system is 
deemed too complex as currently designed. To deal with this situation, we have 
developed a resource allocation procedure based on complexity sensitivity indices that 
quantitatively identify key factor, component, subsystem, discipline, etc. contributors to 
system complexity. In the following subsections we present our sensitivity analysis 
procedure, a computational method for computing the indices, and a similar sensitivity 
analysis methodology aimed at meeting reliability requirements. 
 
3.2.1 Sensitivity Analysis for Resource Allocation. Consider Figure 5, where we have a 
set of factors that interact with a system to impact a set of quantities of interest. We 
estimate complexity from the joint distribution of these quantities of interest.  If our 
complexity is to large, we would like to know how to best allocate our resources to 
effectively and efficiently reduce that complexity.  Thus, we would like to know which of 
the factors that impact the complexity are the key drivers. For this we have developed a 
sensitivity index that enables a rigorous, quantitative ranking of the factors based on the 
expected amount of system complexity that could be reduced if everything about a given 
factor could be known. The derivation of our sensitivity indices is as follows. Let Q  be 
the quantities of interest and let be the factors of our system that Xi  for i ∈{1,…,k}
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impact Q . Here all components of  and all  are random variables. Then the 
complexity of our system is defined as 

Q

C

Xi

 
 Q = exp Q))(h( . (9) 
 
The expected complexity of the system that would be removed if factor  were known 
is given as 

Xi

 
 exp( Q))h( exp(h(Q | Xi )) . (10) −
 
We may normalize this by the initial system complexity to arrive at 
 

 
exp( Q))h( exp(h

(Q))
− (Q | Xi ))

exp(h
, (11) 

 
which is now an index giving the proportion of system complexity that is expected to be 
reduced if factor  is known.  Since Xi h(Q) − h(Q | Xi )  is the mutual information, 

, between Q  and , we may rearrange Equation 3 and define our complexity 
sensitivity indices for resource allocation as 
I (Q; X Xii )

 
−I(Xi;Q)) . (12)  η 1− exp(i =

 
The range of these indices is the interval [0,1].  
 
3.2.2 Computational Approach to Computing Sensitivity Indices. The computation of 
the complexity sensitivity indices follows closely that of the complexity computation 
given in Section 3. The additional requirement here is the computation of the mutual 
information, which we compute according to  
 
 I(Q; X h(Q) + h(Xi ) − h(Q, Xi ),  (13) i ) =
 
where the entropies are computed as shown in Figure 10. 
 
3.2.3 Sensitivity Analysis for Reliability Constraint Resource Allocation. Once a 
system design is of sufficiently low complexity, it may still be the case that several 
reliability type constraints be violated.  That is, constraints of the type shown in Figure 
11, where probability of an event (here the event T ≥ 9 ) is greater than some allowable 
threshold ε.  
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Figure 11: Reliability Constraint Example 

 
For such situations, it is useful to have some means of determining how to allocate 
resources effectively and efficiently to ensure that the system will meet these types of 
requirements. For this we have developed a regional sensitivity analysis capability based 
on Kullback-Liebler divergence, which is given as 
 

 DKL (P || F) = p
−∞

∞

∫ (x)log
p(x)
f (x)

dx,  (14) 

 
where  and  are arbitrary random variables and the support of contains the support 
of . The objective of the method is to identify where to focus efforts (both design and 
research-based) to reduce failure probabilities. What follows is a simple example of our 
regional sensitivity analysis methodology.  

P F F
P

 
Consider two independent uniform random variables  and , and 
their sum , where T is then triangularly distributed. Let’s say our “system” 
fails if T  and that we desire our probability of failure to be less than some ε.  Then 
we compute the Kullback-Liebler divergence between the unconditional input 
distributions and the input distributions conditioned on the failure region.  These 
distributions are shown in 

X1 ~ U[0,1] X2 ~ U[0,9]
T = X1 + X2

> 9

Figure 12, where the blue distributions are unconditional and 
the red distributions are conditioned on the failure event. 
 

 
Figure 12: Unconditional and Conditional Distributions 
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The result is a divergence of 2.4 for  and of 0.2 for . This indicates that  is the 
main contributor to the failure region, which is as expected given the problem setup. 

X2 X1 X2
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4.0 RESULTS AND DISCUSSION 
 
In this section we demonstrate our methodology on an RLC circuit and a notional hybrid 
infantry fighting vehicle. 
 
4.1 RLC Circuit Demonstration 
 
To demonstrate our complexity metric and complexity sensitivity analysis, we consider 
an RLC circuit design for a high pass filter. The RLC circuit to be analyzed is presented 
in Figure 13. The circuit contains R, L, and C components with specified uncertainty 
information. A classical circuit model is given in Figure 14 and the frequency response as 
calculated with classical circuit analysis is presented in Figure 15. 
 

 
Figure 13: RLC Circuit 

 

 
Figure 14: Circuit Model 
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Figure 15: Frequency response 

 
For demonstration purposes, we consider the break frequency of this circuit as a quantity 
of interest that we would like to estimate.  A summary of the RLC circuit demonstration 
results is presented in Figure 16. The problem begins with Activity 1, which is the 
estimation of the complexity of the system with respect to the quantity of interest. We do 
this by modeling the circuit using classical circuit analysis and estimate the complexity 
with the computational methodology presented in Section 3.5. The result is a system 
complexity estimate shown for Activity 1 in the Complexity Tracking plot of Figure 16. 
Assuming this complexity is too high, we use our complexity sensitivity analysis 
methodology to determine the key contributors to the complexity among the capacitance, 
inductance, and model inadequacy (model inadequacy refers to the fact that no model is 
perfect and is discussed in more detail in Section 8). The capacitance and inductance 
were found to be key contributors.  This information was used to determine that expert 
advice should be ascertained regarding how uncertainty information regarding capacitors 
and inductors is presented in specification data. This expert opinion elicitation is the 
second activity. Once the expert opinion information is obtained, the factor distributions 
are updated and the complexity estimation and sensitivity analysis calculation are 
repeated. The reduction in complexity from Activity 1 to Activity 2 is shown in the 
Complexity Tracking plot and the sensitivity analysis results are shown in the 
Complexity Source Identification portion of Figure 16. These results reveal that the 
capacitor is the key contributor to complexity and thus Activity 3 involves an experiment 
to reveal a more accurate estimate of the capacitance distribution.  With this new 
distribution the complexity and sensitivity analysis calculates are again repeated. The 
results of this activity are again shown in Figure 16. The sensitivity analysis results 
clearly identifies the inductance as the key contributor to complexity at this point, thus 
Activity 4 is an experiment to determine a better estimate of the inductance distribution. 
We again repeat the complexity calculation. The total result is that these 4 activities 
reduce the complexity of the system through the evolution of the distribution of the 
quantity of interest, which is shown in the Evolving Estimates portion of the figure. This 
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complexity was systematically reduced using our sensitivity analysis for guiding resource 
allocation decisions. It should be noted here that this demonstration was notional in the 
sense that all numerical values were selected for demonstration purposes.  No physical 
experiments were actually undertaken. 
 
 

 
 

Figure 16: RLC Demonstration Summary 

 
 

4.2 Infantry Fighting Vehicle Demonstration 
 
Figure 17 presents the work breakdown structure for an infantry fighting vehicle design 
problem we are developing to demonstrate our complexity and sensitivity analysis 
methodologies upon. The demonstration is to be completed over the next two months. 
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Figure 17: Simplified Work Break Down for an Infantry Fighting Vehicle 

 
4.3 Model Inadequacy 
 
Mathematical models of reality implemented in computer codes contain many different 
sources of uncertainty.  Among these are parameter uncertainty, residual variability, 
parametric variability, observation error, code uncertainty, and model discrepancy [2].   
Following Reference 2, parameter uncertainty relates to uncertainty associated with the 
values of model inputs;  residual variability relates to the variation of a particular process 
outcome even when the conditions of that process are fully specified, parametric 
variability results when certain inputs require more detail than is desired (or possible) and 
are thus left unspecified in the model;  observation error involves the use of actual 
observations in a model calibration process; code uncertainty results when a code is so 
complex or computationally involved that it may not be possible to execute the code at 
every possible input configuration of interest, thus there is some additional uncertainty 
related to regions of the input space that have not been interrogated;  and model 
discrepancy relates to the fact that no model is perfect, and thus some aspects of reality 
may have been omitted, improperly modeled, or contain unrealistic assumptions. All 
forms of uncertainty must be quantified to properly estimate complexity.  Here we 
consider model inadequacy (also referred to as model discrepancy), which is an often 
overlooked source of uncertainty in simulation-based design. 
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To make the discussion of how we are considering quantifying model discrepancy clear, 
consider a model, M, that estimates a vector of outputs , where is a vector of 
design variables. The outputs of   will have uncertainty associated with them due to 
the discrepancy of M. We represent this discrepancy as F(d), which is a random field on 
the design space. Our estimate of the true vector of outputs can then be written as       
y(d) = z(d) + F(d), which is also a random field. To make this more concrete, consider a 
model with a single design variable and a single output. Figure 18 then shows a Gaussian 
process representation of model discrepancy of this model as a function of a design 
variable. The light blue represents the two standard deviation confidence interval of the 
model discrepancy term and the dark blue line represents the mean value of the model 
discrepancy. In this notional example we are assumed the model is unbiased, hence the 
zero value for the mean line. At any given design point, say d* for this one-dimensional 
example, the model for which this discrepancy is quantified estimates an output of 
interest z*. At the point d* on the figure, the model discrepancy is represented by a 
normal distribution shown in red. Since we are using a Gaussian process representation of 
model discrepancy, at any point in the design space the model discrepancy is normally 
distributed, which is consistent with a maximum entropy perspective of uncertainty 
quantification.  

z(d) d
z(d)

 

 

Figure 18: Notional Representation of Model Inadequacy 

 
 
The term notional has been used here to imply that we have not consulted experts or 
historical data at this point to formally quantify the model discrepancy. Instead, we have 
focused on how we will represent that discrepancy in a general way.  As noted, this 
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Gaussian process representation is a natural extension of the maximum entropy 
representation in the sense that at any point in the design space we have a maximum 
entropy distribution of the model discrepancy based on information coming from experts, 
historical data, or information coming from correlation with other nearby design points. 
We plan to quantify the model discrepancy of several models being used by the 
Vanderbilt team in the META-X project. 
 
4.4 Implementation of our Methods within Analytical Target Cascading 
 
The next step to applying our work in a design setting is to implement our methodology 
within a design flow.  To that end, we consider the application of methods within a 
simulation-based multidisciplinary design methodology such as analytical target 
cascading as the first step. 
 
Analytical target cascading (ATC) is a methodology for the design of multi-disciplinary 
systems in which the design process is cast as a hierarchical multi-level optimization 
problem [3,4].  It is particularly useful during the early stages of design in order to 
partition the overall design into its respective systems, subsystems, and components, 
identify the connections between the various pieces, and coordinate the exchange of 
design targets and parameters across the hierarchical structure. Figure 19 shows an 
example multi-level ATC hierarchy. Each block in the ATC framework corresponds to a 
physical entity in the vehicle design, but is also an abstract representation of one or more 
system, subsystem, or component models that are used to solve optimization subproblems 
at the respective tiers. 
 
The ATC procedure can be summarized in four steps [5]: 
 

1. Specify overall vehicle mission targets 
2. Propagate vehicle targets to subsystem and component sub-targets 
3. Design vehicle systems, subsystems and components to achieve their respective 

sub-targets 
4. Verify that the resulting design meets overall vehicle mission targets 
 

Atop the design hierarchy is the vehicle level (also known as the supersystem), where the 
overall vehicle mission targets are enumerated in Step 1; these targets are specified in the 
vector T.  Achieving a feasible design for a vehicle that meets all such targets (e.g., 
range, weight, maneuverability) and satisfies the associated constraints (e.g., cost, 
schedule) is the goal of the vehicle-level optimization problem.  In Step 2, the overall 
vehicle targets are passed to the second tier as targets for the system-level optimization 
subproblems; for the simplified ATC schematic shown in Figure 19, this propagation of 
targets to the two systems is captured by the vectors Rs1U and Rs2U.  In Step 3, the 
system-level analysis models use the local variables xs1 and xs2, as well as target 
response values Rss1L and Rss2L computed by the subsystem-level analysis models, to 
solve the system-level optimization subproblem.  The computed response values are then 
cascaded downward as targets Rss1U and Rss2U to the subsystem-level optimization 
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problems, as well as back up to the vehicle level via the vectors Rs1L and Rs2L in order 
to carry out Step 4: ensuring that the system-level responses are consistent with the 
overall mission targets T (Figure 19).  This “cascade down” and “rebalance up” 
procedure is characteristic of the ATC decomposition approach. It is an iterative process 
that is repeated at each block in the ATC hierarchy until a feasible vehicle design is 
achieved.  In addition to the cross-tier exchange of target values through the vectors RL 
and RU, the various systems, subsystems, and components of the ATC hierarchy may 
also be connected to one another across multiple levels through linking variables yL and 
yU, or laterally along one level via linking variables y (Figure 19).  In this way, ATC 
maintains a bidirectional information cascade that coordinates tasks across the different 
parts of the distributed design problem, and ensures consistency throughout the design 
process. 
 
 

 
 

 

Figure 19: Data Flow for an ATC Design Problem (adapted from [5]) 

4.4.1 Applications, Advantages, and Limitations. To date, analytical target cascading 
has been applied to a number of vehicle design problems; for example, for the conceptual 
design of an aircraft [6], a sport utility vehicle [7], and an advanced technology heavy 
truck [8].  Beyond the scope of vehicle design, other supersystems studied using the ATC 
approach have included engineering enterprises [9] and thermal and HVAC design in 
buildings [10].  
 
There are a number of advantages to the ATC approach for the design of complex 
systems.  The primary motivation for ATC is that the efficiency of a design process 
greatly improves when the various required design tasks can be performed concurrently 
[4,5].  In order to achieve this goal, it becomes desirable to decompose a design problem 
as much as possible into subproblems that can be solved in parallel.  A key limitation of 
concurrent design, however, is that properly accounting for all intersystem interactions 
can become an intractable problem, leading to increased programmatic risk and cost and 
schedule overruns.  Analytical target cascading, however, provides a rigorous method to 
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coordinate multiple optimization subproblems and exchange design information in 
systematic manner.  By leveraging the idea of distributed design, ATC allows for a 
complex design process to be partitioned into manageable segments, design tasks to be 
delegated across multiple teams, and computational throughput to be greatly increased.  
The main outcome is a significant reduction in design cycle time.  In addition, by 
ensuring at each iteration that the overall design targets are met at all levels of the ATC 
hierarchy, late-stage design iterations can be avoided, thus saving valuable time and 
resources [4]. Furthermore, because the target propagation and target matching 
procedures are integrated into one step (in contrast to, for example, the “all-at-once” 
approach shown on the left side of Figure 20), the total number of design iterations can 
also be reduced. 
 
Despite numerous advantages, however, there are nevertheless several limitations 
associated with ATC.  The first class of limitations relates to problem formulation.  The 
multi-level ATC framework lends itself nicely to designs that can be decomposed into a 
hierarchical structure; failing that, there is limited guidance on how to formulate a 
problem within the ATC context.  This is especially true of complex designs with 
numerous interfaces and interactions, such that it is difficult to isolate individual systems, 
subsystems, and components and arrange them in a logical hierarchy.  Assuming the 
design problem can be assimilated into the ATC architecture, a second challenge arises in 
that appropriate analysis models must be available for each subproblem.  This problem 
has been identified as the main difficulty of ATC, and is particularly observable during 
the early stages of design, when analysis models are likely to be unavailable [5].  
Furthermore, there exists a distinct tradeoff between model fidelity and resource 
expenditure: sophisticated analysis tools are expensive to develop and to compute, 
whereas “back-of-the-envelope” calculations may not be sufficient to capture the 
complexity of the design and the interactions therein [4].  Clearly, it is not adequate to 
simply have a set of analysis models at hand; selecting models of the appropriate levels 
of fidelity is an issue that must also be addressed.  Finally, in order to leverage the main 
asset of ATC to coordinate distributed design tasks, great care must also be taken to 
identify the appropriate responses, linking variables, and local variables that map the 
design subproblems to their respective analysis models; failure to do so would result in 
incompatibilities between the abstract models and the physical design that can easily 
propagate to the various parts of the ATC hierarchy and lead to inaccuracies in the 
overall design.   
 
A second category of limitations relates to the computational efficiency of ATC.  Even 
though ATC takes advantage of concurrent design and parallel computing, efficiency can 
still become an issue due to the added cost of coordinating analyses based on different 
disciplines [5].  Another concern is whether the “cascade down - rebalance up” approach 
for ATC guarantees convergence to a feasible design.  However, this concern has been 
mostly unfounded in various applications, as the ability of ATC to converge to an optimal 
solution has been demonstrated through several example problems [4].  Furthermore, it 
has also been shown that several nested ATC coordination strategies are provably 
convergent [11].  In fact, the convergence properties of the ATC decomposition approach 
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have made it particularly attractive for system design, especially when the all-at-once 
design strategy is not available as an option [11]. 
 
4.4.2 Application to IFV Design Problem. We are currently working to apply the ATC 
methodology to a challenge problem involving the design of a hybrid infantry fighting 
vehicle (IFV) (Figure 17).  The main objective of the challenge problem is to demonstrate 
the validity of ATC to the development of a stochastic process model for the design of 
complex systems.  Furthermore, a second objective is to use the hybrid IFV problem to 
illustrate how complexity-based sensitivity analysis may be employed at each design 
iteration to identify key contributors to complexity at every level of the ATC hierarchy.  
For this challenge problem, we have identified four vehicle-level targets: 
 
1. The hybrid IFV must operate in quiet mode for at least 8 hours 
2. The empty weight of the hybrid IFV must not exceed 25,000 kg 
3. The hybrid IFV must achieve a maneuver acceleration of 0 to 10 m/s in 5 seconds  
4. The hybrid IFV must have a range of at least 500 km 
 
The decomposition of a simplified hybrid IFV design problem into the ATC framework 
is shown on the left side of Figure 20.  The vector T is composed of the four vehicle-level 
targets listed above, which are cascaded down to two systems and seven subsystems.  
Each block in the hierarchy represents an analysis model that solves an optimization 
subproblem to match targets passed from an upper level.  The exchange of state variable 
targets and computed responses between the tiers is shown through the bidirectional 
arrows, which are color-coded according to their relation to one of the four vehicle-level 
targets.   
 

 
Figure 20: Decomposition of IFV Design Problem using ATC 
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On the right side of Figure 20 is shown the notational complexity decomposition for the 
IFV problem.  The quantities of interest in this design are the vehicle-level targets T.  At 
the top tier, we compute the vehicle-level complexity CT with respect to those quantities 
of interest.  Using complexity-based sensitivity analysis, we then decompose the vehicle-
level complexity into contributions from the two systems S1 and S2, as well as their 
interactions.  This procedure can then be repeated to uncover how complexity associated 
with each of the seven subsystems and their interactions contributes to complexity at the 
system-level and the vehicle-level.  We believe that this capability to quantify and 
apportion complexity provides valuable insights to inform design decisions and guide 
resource allocation, as well as delivers a rigorous method to manage uncertainty and 
reduce risk in system design. 
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5.0 CONCLUSION 
 
We have presented here our work on stochastic process decision methods for cyber-
physical design. The emphasis was on our complexity metric development in terms of a 
definition, a quantification process, as well as on our sensitivity analysis development, 
which is to be used for informing efforts aimed at complexity reduction.   
 
The methods we have developed are very promising in terms of establishing a rigorous 
procedure for quantifying and subsequently reducing system complexity.  However, there 
are a number of further tasks that must be completed prior to making our methodology 
generally applicable in the META context.  The tasks, which we intend to complete 
during the META-X effort are as follows: 
 
Task: Further develop complexity metric estimation techniques to efficiently handle 
multiple quantities of interest and multivariate interactions. We will approach this by 
incorporating advanced filtering techniques to provide samples for efficient high 
dimensional integration while maintaining the probabilistic dependence structure among 
system factors. 
 
Task: Develop a decomposition-based approach to uncertainty propagation through a 
complex system. We will approach this by using advanced filtering techniques to rapidly 
coordinate information among subsystems. 
 
Task: Develop a model inadequacy quantification procedure that incorporates historical 
data and expert opinion.  The method should be capable of sequential updates for 
situations where new data becomes available. We will approach this by creating a 
Gaussian process model of model inadequacy incorporating techniques from trust region 
methods from optimization. 
 
Task:  Develop a resource allocation procedure based on complexity-based sensitivity 
analyses and a resource expenditure model. We will approach this by incorporating 
techniques from statistical decision-theory. 
 
Task: Create open source versions of our complexity metric and complexity-based 
sensitivity index estimators. We will approach this by considering implementing our 
methods in C, Python, R, or some other open source language. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
ATC      analytical target cascading 
CDF      cumulative distribution function 
C(Q)      complexity of a system with quantity of interest Q 
D(P||F)  Kullback-Liebler divergence from P to F 
H(Y)     information entropy of random variable Y 
IFV       infantry fighting vehicle 
I(X;Q)   mutual information between X and Q 
N(μ,σ2)  normal distribution with mean μ and variance σ2 

P            probability measure 
Q            quantity of interest   
RLC       resistance, inductance, capacitance 
T            vector of targets 
T(a,b,c)  triangular distribution with minimum a, maximum b, and mode c 
U[a,b]    uniform distribution with minimum a, maximum b 
V           voltage 
d            design variable vector 
h(Q)       differential entropy of the distribution of the quantity of interest Q 
p(y)        probability mass function of random variable Y 
y(d)        true output 
z(d)        model output 
F            sigma field 
Ω           sample space 
η            complexity-based sensitivity index 
λ            probability mass 
μ            mean  
σ2         variance 
 
 


