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Abstract— This paper proposes an algorithmic approach to
synthesize stabilizing control laws for discrete-time piecewise
affine probabilistic (PWAP) systems based on computations of
probabilistic reachable sets. The considered class of systems
contains probabilistic components (with Gaussian distribution)
modeling additive disturbances and state initialization. The
probabilistic reachable state sets contain all states that are
reachable with a given confidence level under the effect of
time-variant control laws. The control synthesis uses principles
of the ellipsoidal calculus, and it considers that the system
parametrization depends on the partition of the state space. The
proposed algorithm uses LMI-constrained semi-definite pro-
gramming (SDP) problems to compute stabilizing controllers,
while polytopic input constraints and transitions between re-
gions of the state space are considered. The formulation of
the SDP is adopted from a previous work in [1] for switched
systems, in which the switching of the continuous dynamics
is triggered by a discrete input variable. Here, as opposed
to [1], the switching occurs autonomously and an algorithmic
procedure is suggested to synthesis a stabilizing controller. An
example for illustration is included.

I. INTRODUCTION

This paper addresses the task of controlling discrete-time

piecewise affine probabilistic (PWAP) systems, which consist

of a partition of the state space and a collection of affine

dynamics valid in each region. Probabilistic uncertainties

with respect to the initial state and additive disturbances are

considered with Gaussian distribution. In general, piecewise

affine (PWA) systems are convenient mathematical models

for practical application, since discontinuities arising from

saturation constraints, hysteresis, or friction can be encoded.

Furthermore, PWA systems enable to encode linearizations

of originally nonlinear dynamics for a finite number of state

space regions [2]. The focus of this contribution is to provide

stabilizing time-variant state feedback control laws for set-

to-set transitions of the system state, while ensuring a given

probability level. As a motivating example, consider the

translational dynamics of a ship in the open sea, and the task

of reaching a given target set. Suppose that the open sea is

divided into different regions, where the current of the sea

flows in different directions. Hence, the dynamics of a ship is

described by different sets of nonlinear differential equation

in each region. A linearization of the nonlinear dynamics

in each region of the sea yields a PWA system, and the

proposed procedure in this contribution provides a control

law to reach the target set. This law takes the different flows
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in each region of the sea into account, as well as it ensures

a specified probability bound for reaching the target.

PWAP systems are a special class of stochastic hybrid

systems, and a considerable part of research on verification

and control of hybrid systems is devoted to reachability

computations. Whereas the question of whether a target set is

reached from an initial set is undecidable in the general case,

algorithmic reachable set computation has gained significant

attention in the last two decades. An important class of

methods is to determine conservative over-approximations of

reachable sets in form of polytopes ([3], [4], [5]), zonotopes

([6], [7]), or support functions ([8]). These variants differ in

the compromise between accuracy, computational effort, and

memory requirement for obtaining the over-approximations.

For PWA systems, [9], [10] presented a method for controller

synthesis based on problem decomposition: first, the con-

tinuous reachability problem is solved on sets of simplices

such that any simplex is left through an exit facet. Secondly,

a discrete control problem is solved to obtain a feasible

discrete state path. For the same system class with bounded

disturbances, an optimal control problem is addressed by

dynamic programming in [11]; this approach is extended to

state- and input-dependent disturbances in [12]. The work by

[13] provides a technique for controller synthesis based on

a discrete abstraction of the PWA that takes into account the

control inputs.

As predecessor of the work to be presented here, [14] in-

troduced a method for synthesizing controllers for nonlinear

discrete-time systems with bounded disturbances in a non-

stochastic setting. The main idea is to solve semi-definite

programming (SDP) problems formulated for conservative

linearizations of the dynamics in order to obtain robust

time-variant control laws for set-to-set control. The concept

was extended to a stochastic setting for discrete-time linear

systems in [15]. The underlying principle was to synthesize

feedback control laws by SDP such that the controlled system

is stabilized to a given confidence level. The state sets, which

are reachable under the effect of a synthesized continuous

control law to a specified (high) probability, are represented

by ellipsoids. This choice is suitable with respect to the

compatibility with the synthesis procedure using SDP. The

task of probabilistic stabilization considers polytopic input

constraints. This work is extended in [16] to switched linear

dynamics, in which the current active dynamic is determined

by a discrete input. In order to select an appropriate discrete

input in any time step, a type of tree search is adopted,

which steers the system evolution towards a given target

set. The techniques developed for switched linear systems
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are extended in the present paper to PWAP, for which the

switching occurs autonomously, and is thus not available as

a degree of freedom for control.

The paper first introduces the class of systems and control

problem (Sec. II), and Sec. III specifies the control law and

the SDP. Reachability analysis for PWAP systems is covered

in Sec. IV, and the optimization-based solution procedure is

proposed in Sec. V. Numerical results for an example are

provided in Sec. VI, before Sec. VII concludes the paper.

II. SYSTEM AND PROBLEM DEFINITION

A. Preliminaries

This section first clarifies the notation and recalls some

basic definitions and facts used throughout the paper.

Let E denote the set of all ellipsoidal sets in Rn. An

ellipsoidal set ε(q,Q) ∈ E is parametrized by a center point

q ∈ Rn and a symmetric and positive-definite shape matrix

Q ∈ Rn×n according to:

ε(q,Q) =
{
x ∈ Rn|(x− q)TQ−1(x− q) ≤ 1

}
(1)

with T indicating the transpose of the vector.

The semi-major axis is the largest radius of an ellipsoid,

and the semi-minor axis is the smallest radius of an ellipsoid.

If Λ(Q) denotes the set of eigenvalues of the matrix Q, the

length and orientation of the semi-axes of ε(q,Q) can be

described by the root of the eigenvalues λi ∈ Λ(Q) and the

eigenvectors vi, respectively.

Let P denote the set of all polytopic sets in Rn. A convex

polytope P ∈ P is the intersection of np halfspaces, such

that P = {x ∈ Rn | Rx ≤ b, R ∈ Rnp×n, b ∈ Rnp}. Each

halfspace is defined by a tuple (ri, bi), with ||ri|| = 1.

The distance of a point q to the half plane rix = bi is

given by:

d ((ri, bi), q) := riq − bi (2)

The interior and boundary of a set Θ ⊂ Rn is denoted by

int(Θ) and ∂(Θ), respectively, and it holds that:

int(Θ) ∪ ∂(Θ) = Θ. (3)

The multivariate normal distribution of an n-dimensional

random vector ξ with covariance matrix Qξ ∈ Rn×n, Qξ =
QT

ξ ≥ 0, and mean vector qξ ∈ Rn is denoted by:

ξ ∼ N (qξ, Qξ). (4)

The probability density function of a multivariable nor-

mal distribution has surfaces of equal density, which are

described by ellipsoids. The shapes of this ellipsoids are

determined by the covariance matrix Qξ, and a value cξ (see

[17]):

(ξ − qξ)
TQ−1

ξ (ξ − qξ) = cξ. (5)

The ellipsoid W ∈ E containing the realizations of the

random variable ξ for a given cξ is given by:

W = ε(qξ, Qξcξ) ∈ E .

In [16], it has been shown that W δ = ε(qξ, Qξcξ) is a

confidence ellipsoid with a scaling factor cξ. The latter is

computed from the cumulative distribution function of a χ2-

distribution, and Pr(ξ ∈ W δ) = δ holds.

The sum of two Gaussian variables ξ1 ∼ N (qξ1 , Qξ1)
and ξ2 ∼ N (qξ2 , Qξ2) is again a Gaussian variable with the

following distribution:

ξ1 + ξ2 ∼ N (qξ1 + qξ2 , Qξ1 +Qξ2). (6)

B. System Definition

The class of systems under consideration are discrete-time

PWAP systems with input constraints and uncertain state

initialization. Their dynamics is given by the composition

of the dynamics for the continuous state xk ∈ Rn and the

discrete state zk ∈ Z := {1, . . . , nz} with time index k. The

continuous state space Rn is partitioned into nz polytopic

regions Θ(i) ∈ P , i ∈ Z defined by R
(i)
x ∈ Rnx,i×n and

b
(i)
x ∈ Rnx,i . For any pair (i, j) with i ∈ Z , j ∈ Z , and

i 6= j it holds that:

int
(

Θ(i)
)⋂

int
(

Θ(j)
)

= ∅, and Rn =

nz⋃

i=1

Θ(i), (7)

i.e. the interior of the regions do not overlap, and the union

of the regions yields the continuous state space. To any

region Θ(i) ∈ Θ̄ := {Θ(1), . . . ,Θ(nz)} a (possibly) different

dynamics for xk is assigned. The discrete state zk encodes

the index i of the current region which and determines the

continuous dynamics active in time k:

xk+1 = Azkxk +Bzkuk +Gzkvk. (8)

Here, uk ∈ Rm is the continuous input, and vk ∈ Rn the

disturbance vector.

The initial state x0 is assumed to be Gaussian distributed,

i.e. for a mean qx,0 ∈ Rn and a covariance matrix Qx,0 ∈
Rn×n with Qx,0 = QT

x,0 ≥ 0 it applies:

x0 ∼ N (qx,0, Qx,0) (9)

Likewise, the disturbance input vk is a normal random

variable with mean qv ∈ Rn and covariance matrix Qv ∈
Rn×n and Qv = QT

v ≥ 0:

vk ∼ N (qv, Qv). (10)

Its effect on the dynamics is scaled by Gzk ∈ Rn×n.

The continuous input is constrained to a polytope U ∈ P ,

which is parametrized by Ru ∈ Rnu×m and bu ∈ Rnu :

uk ∈ U = {uk | Ruuk ≤ bu}. (11)

To prepare the formulation of a feasible execution of the

PWAPS, let:

getAdjacentReg(xk) : Rn → 2Z (12)

denote a function to determine the regions in which xk is

contained: if xk ∈ int(Θ(i)), the result of (12) is i, while

for xk ∈ ∂(Θ(i)), the result is the subset of Z referring

to discrete states which share a common boundary ∂
(
Θ(i)

)

in xk. An admissible execution of the PWAP system is as

follows:
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Definition 2.1: Let (x0, z0) be an initialization with x0 ∈
Θ(z0). A sequence of pairs (xk, zk), k ∈ {0, 1, . . .} is called

admissible for the PWAP system, if, for any k, the pair

(xk+1, zk+1) is determined from (xk, zk) by the following

order of computations:

1) sample the disturbance vk ∼ N (qv, Qv)
2) choose a feasible input uk ∈ U

3) compute xk+1 according to (8) for (Azk , Bzk , Gzk)
4) determine zk+1 according to the rule:

if xk+1 ∈ int(Θ(i)), i ∈ Z do zk+1 := i

elseif xk+1 ∈ ∂(Θ(i)), i ∈ Z do

Zadj := getAdjacentReg(xk+1)
if zk ∈ Zadj,k+1 do zk+1 := zk
else zk+1 := minz∈Zadj,k+1

z

end

end
△

Assumption 2.1: For any Θ(i) ∈ Θ̄ with 0 ∈ Θ(i), let

the origin 0 ∈ Rn determine an equilibrium point of (8)

with zk = i.

C. Problem Definition

As mentioned in Sec. II-A, it is possible to derive a

confidence ellipsoid for an n-dimensional random variable.

Thus, the initial confidence ellipsoid of a PWAP system is

introduced as:

Xδ
0 := ε(qx,0, Qx,0cx). (13)

It has been shown in [1], that the evolution of xk ac-

cording to (8) yields a random variable in each time step.

Therefore, it is possible to provide a confidence ellipsoid

Xδ
k = ε(qx,k, Qx,kcx) for each k.

Problem 2.1: Let a PWAP system as defined before, a

terminal region T = ε(0, QT ) ⊂ Rn centered in the origin

0 ∈ Rn, and an initial confidence set of states Xδ
0 be given.

Find a control law:

uk = κk(xk), xk ∈ Xδ
k , (14)

which transfers the initial state x0 ∈ Xδ
0 into T with

probability δ after N steps. �

It is assumed, that there exists a terminal controller, which

renders T probabilistically invariant once Xδ
N is contained in

T, i.e. the state x is held in T with probability δ for k > N .

III. CONTROL LAW SPECIFICATION

The objective is to develop an algorithmic method to solve

problem 2.1. To specify the structure of the control law

(14), a local time-variant, continuous, affine state feedback

controller of the following form is selected:

uk = κk(xk) = −Kkxk + dk ∈ U, ∀ xk ∈ Xδ
k . (15)

Thus, a solution of Problem 2.1 is established by a set of

control tuples (Kk, dk) ∀ k ∈ {0, 1, . . . , N − 1} satisfying

the conditions of the problem statement while considering:

Uk := {uk | ∃ xk ∈ Xδ
k : uk = −Kkxk + dk} ⊆ U. (16)

The control law (15) leads to the following closed-loop

dynamics for (8):

xk+1 = Azkxk +Bzkκk(xk) +Gzkvk (17a)

= (Azk −BzkKk)
︸ ︷︷ ︸

=:Acl,k,zk

xk +Bzkdk +Gzkvk. (17b)

Starting from the initial distribution of the random variable

x0 ∼ N (qx,0, Qx,0), the state distribution according to the

dynamics (17b) follows from the linear transformation of

ellipsoids to:

qx,k+1 = Acl,k,zkqx,k +Bzkdk +Gzkqv (18a)

Qx,k+1 = Acl,k,zkQx,kA
T
cl,k,zk

+GzkQvG
T
zk
. (18b)

With (18), the confidence ellipsoid Xδ
k+1 is obtained from:

Xδ
k+1 = ε(qx,k+1, Qx,k+1cx

︸ ︷︷ ︸

=:Qδ
x,k+1

). (19)

In [16], the following semi-definite program has been

introduced, which is solved for any k ∈ {0, . . . , N} to

provide the controller tuples (Kk, dk) and thus Xδ
k+1:

min
Sk+1,Kk,dk

trace









Sk+1 0 0
0 w1‖qx,k+1‖ 0
0 0 w2‖uk‖









(20a)

subject to:

qTk+1Lqk+1 − ρqTx,kLqx,k ≤ αk (20b)

qk+1 = Acl,k,zkqx,k +Bzkdk +Gzkqv (20c)

αk ≤ max
l∈{1,...,k}

ωlαk−l (20d)





Sk+1 Acl,k,zkQx,k GzkQv

Qx,kA
T
cl,k,zk

Qx,k 0

QvG
T
zk

0 Qv



 ≥ 0 (20e)

trace(Sk+1) ≤ trace(Qx,k) (20f)
[

(bi − ru,idk)In −ru,iKk(Q
δ
x,k)

− 1
2

−(Qδ
x,k)

− 1
2KT

k r
T
u,i bi − ru,idk

]

≥ 0

∀i = {1, . . . , nc}

(20g)

(20h)

The cost function (20a) considers the size of the confidence

ellipsoid Xδ
k+1, the Euclidean distance of the mean to the

origin, and the input energy. The linear constraints (20b)-

(20d) ensure a convergence of the mean value qx,k+1 to

the origin for increasing k. Sk+1 in (20e) is an over-

approximation of the covariance matrix Qx,k+1, and (20f)

enforces a reduction of all semi-axes of Xδ
k . The input

constraint (16) is formulated by (20g). A detailed derivation

of each constraint can be found in [16].

IV. REACHABILITY ANALYSIS OF PWAP SYSTEMS

The SDP as specified by (20) does not consider the

partition of the continuous state space for the PWAP system,

i.e., it does not take into account whether Xδ
k+1 is completely
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contained in region Θ(i). If containment applies (Xδ
k+1 ∩

Θ(i) = Xδ
k+1 for one i ∈ Z), the procedure continues

for the next time step. If not, i.e. if Xδ
k+1 intersects with

two or more partition elements (Xδ
k+1 ∩ Θ(i) 6= Xδ

k+1),

the following function is employed to determine all discrete

states for which intersections of Θ(i) ∈ Θ̄ and Xδ
k+1 exist:

Zint,k+1 := getIntReg(Xδ
k+1, Θ̄) ⊂ Z (21)

If the result is a singleton, i.e. for the cardinality |Zint,k+1|
applies |Zint,k+1| > 1, no further action is needed. Other-

wise, two options are evaluated: (i.) to push Xδ
k+1 into a

single region Θ(i), or (ii.) to use the multiple intersection

to consider different branches of evolution for the following

time steps. The first option, which is preferable in terms

of computational effort is tried first. For this purpose, the

initial SDP is modified to avoid intersection with the region

boundary in time k: the SDP is solved again with an

additional constraint to push Xδ
k+1 into the desired direction.

Fig. 1 shows this case on the left. To obtain one of the

dotted ellipsoid (instead of Xδ
k+1), the additional constraint

formulates that the distance between the center point qx,k+1

and the boundary ∂(Θ(i)) is greater than the length of the

semi-major axis of Xδ
k . If a hyperplane of ∂(Θ(i)) to which

the distance has to be adjusted is parameterized by the

normal vector (r
(i)
j and the scalar b

(i)
j ), this condition can

be specified as:

d
(

(r
(i)
j , b

(i)
j ), qx,k+1

)

= r
(i)
j qx,k+1 − b

(i)
j

≥
√

max{Λ(Qδ
x,k)} (22)

The extended SDP, i.e. (20) with (22), has to be solved for

every i ∈ Zint,k+1 := getIntersecReg(Xδ
k+1, Θ̄), until a

feasible solution is found. If multiple feasible solution exists

for i ∈ Zintsec,k+1, the best solution according to the cost

function (20a) is chosen.

If the first option fails, i.e. none of the SDP problems

lead to an ellipsoid fully contained in one region, the

second option (ii.) is applied. The set Xδ
k+1 remains as

initially computed and is partitioned (right part of Fig. 1):

one SDP problem is solved for each i ∈ Zint,k+1, and

the obtained control tuples are applied to Xδ
k , leading to

Xδ
kXδ

k

Xδ
k+1Xδ

k+1

Xδ
k+2,γ1

Xδ
k+2,γ2

Θ(1) Θ(1)

Θ(2) Θ(2)

Fig. 1. Intersection of Xδ

k+1 with more than one region Θ(i): (i.) left:

pushing Xδ

k+1 into one region (dotted ellipsoids); (ii.) right: two branches

arise from Xδ

k+1 by solving an SDP problem each for the two dynamics

assigned to Θ(1) and Θ(2) starting from Xδ

k+1.

different branches of the further evolution. When computing

the successor sets Xδ
k+2,γi

of Xδ
k+1, the computation only

considers the respective share of Xδ
k+1 which corresponds to

the intersection with Θi. The share ǫi is determined by the

probability of xk being inside of Θ(i) ∩ Xδ
k+1. Computing

this probability relies on solving a multi-dimensional integral

of the Gaussian probability density function over Θ(i):

Pr
(

xk+1 ∈ Θ(i)
)

=

∫

ζ∈Θ(i)

N (qx,k+1, Qx,k+1)dζ. (23)

While hard to solve analytically, this integral can be approx-

imated by using a combination of nx,i univariate distribu-

tions, which can be evaluated by the cumulative distribution

function. The approximation used in [18], [15] for evaluating

so-called chance constraints, is also suitable for the problem

on hand. With (23), the share ǫi can by obtained from:

ǫi =
Pr(xk+1 ∈ Θ(i))

∑

i∈Zint,k+1
Pr(xk+1 ∈ Θ(i))

,
∑

i∈Zint,k+1

ǫi = 1.

(24)

Let a function to accomplish the computation according to

(24) be named getProbPart(Xδ
k ,Θ

(i)).
In order to keep track of the different branches of the con-

fidence sets, a tree structure can be used. A node of the tree

represents a tuple γ =
(
Preγ , Sucγ , X

δ
k+1, Zint,k+1, ǫγ

)
,

in which Preγ refers to the predecessor node, Sucγ de-

notes the set of successor nodes. Xδ
k+1 is the confidence

reachable set associated to the node, Zint,k+1 is again the

set of indices of the regions intersecting with Xδ
k+1, and

ǫγ is the share of the confidence δ for Xδ
k , see (24). The

edges of the tree establish the successor relation between

two subsequent confidence sets (e.g. Xδ
k+1 → Xδ

k+2,γ1
in

Fig. 1. If branching occurs, as in the case of the figure

that Xδ
k+2,γ1

and Xδ
k+2,γ2

stem from Xδ
k+1, the distribution

xk+1 ∼ N (qx,k+1, Qx,k+1) is converted into two distri-

butions xk+2,γ1 ∼ N (qx,k+2,γ1 , Qx,k+2,γ1) and xk+2,γ2 ∼
N (qx,k+2,γ2 , Qx,k+2,γ2). More precisely, two control tuples

(Kk+1,γ1 , dk+1,γ1 ) and (Kk+1,γ2 , dk+1,γ2 ) are determined

such that the probabilities for k+2 are distributed according

to the shares ǫ1 and ǫ2. The fact, that Xδ
k+2,γ1

is more likely

to occur, since it is more likely for xk to be inside Θ(1) than

in Θ(2), is considered by ǫ1 = 0.6 > ǫ2 = 0.4 in the figure.

V. OVERALL SYNTHESIS ALGORITHM

The procedure to obtain the sequence of control laws

(Kk,γ , dk,γ) for k ∈ {1, . . . , N} to solve the problem

2.1 is now formulated as an algorithm. Let the set of

nodes to be considered in time k be denoted by Γk =
{γ1, . . . , γnγ,k

}. The Algorithm 5.1 steers the initial distri-

bution x0 ∼ N (qx,0, Qx,0) into the terminal region T, and

the computation terminates successfully with k = N , if the

confidence ellipsoids Xδ
N,γ ∈ E of all nodes γ ∈ ΓN are

contained in the target set T.

The main loop of the algorithm is executed until the

terminal region T is not yet reached, and the confidence sets

sufficiently approach T in the each step. The latter criterion,
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Algorithm 5.1: Probabilistic Control Algorithm

given: (8) with x0 ∼ N (qx,0, Qx,0), vk ∼ N (qv, Qv), Θ̄,

and U = {uk | Ruk ≤ b}; T, δ, πmin, ω, ρ, and α0

define: k := 0, Zint,0 = getIntReg(Xδ
0 , Θ̄),

π0 := πmin, γ1 = (∅, ∅, Xδ
0 , Zint,0, 1), Γ0 := {γ1}

while ∃ γ ∈ Γk with Xδ
k * T and πk ≥ πmin do

Γk+1 := ∅
for γi ∈ Γk do

for p ∈ Zint,k do

solve the optimization problem (20) with zk = p

⋆ compute the distribution of xk+1,p from (17b)

compute Xδ
k+1,p according to (19)

Zint,k+1 := getIntReg(Xδ
k+1,p, Θ̄)

if |Zint,k+1| > 1 do

“push” Xδ
k+1,p into one region by solving the

SDP with the additional constraint (22)

if a feasible solution exists do go to line ⋆

else

for j ∈ Zint,k+1 do

ǫj := getProbPart
(

Xδ
k+1,p,Θ

(j)
)

· ǫ(γi)

γj := (γi, ∅, Xδ
k+1,p, Zint,k+1, ǫγj

)
Sucγi

:= Sucγi
∪ γj

Γk+1 := Γk+1 ∪ γj
end

end

end

end

end

compute πk+1 according to (25)

k := k + 1
end while

return (Kk,γ , dk,γ) for all γ ∈ Γk and 0 ≤ k ≤ N − 1

which is included to avoid an unreasonably large number of

iterations, can be modeled by:

πk+1 = || min
γ∈Γk+1

qx,k+1,γ − min
γ∈Γk

qx,k,γ || ≥ πmin (25)

with a parameter πmin ∈ R.

Lemma 5.1: Problem 2.1 is successfully solved, if Algo-

rithm 5.1 terminates with Xδ
N,γ ⊆ T, ∀γ ∈ ΓN . The solution

provides a sequence of control laws (15) which steer any

initial state x0 ∈ Xδ
0 with probability δ into the target set T

in N steps. Furthermore, the input constraint uk ∈ U holds

for all 0 < k < N .

Sketch of Proof: For any k ∈ {0, 1, . . . , N − 1} one

of the following cases applies: (1.) Xδ
k is mapped by (18),

(19) into Xδ
k+1 ⊆ Θ(i) for one Θ(i) ∈ Θ̄; (2.) Xδ

k is

mapped into Xδ
k+1 * Θ(i) for any Θ(i) ∈ Θ̄, but the step of

“pushing” leads to the same outcome as (1.); (3.) projecting

Xδ
k forward in time leads to a set Zint,k+1 6= ∅, pushing

fails and branching occurs. For the cases (1.) and (2.), the

solution of (20) by definition preserves the confidence δ,

since the scaling of Xδ
k+1,γ = ε(qx,k+1,γ , Qx,k+1,γcx) by

cx adjust the size of the ellipsoid such that the share δ

of the distribution xk ∼ N (qx,k, Qx,k,) is transferred into

Xδ
k+1 (see also [16]). The same reasoning holds for all

k ∈ {0, 1, . . . , N−1}, such that Pr(xN ∈ Xδ
N ) = δ follows

from induction. For case (3.), the assignment for ǫj in the

algorithm multiplies the probability of xk ∈ Xδ
k,γi

(i.e. ǫγj
)

with the share of intersection of Xδ
k+1,p with Θ(j). According

to (24), the union of the confidence ellipsoids reached from

Xδ
k+1,p is again ǫγj

. Thus, a branching step does not change

the overall probability of including xk+1 in the confidence

sets obtained from branching. With that the induction holds

as for the cases (1.) and (2.). The satisfaction of the input

constraints follows from the construction of (20). �

In addition, attractivity with confidence δ and stability

with confidence δ as defined in [16] follows under certain

conditions from a successful termination of Algorithm 5.1.

VI. NUMERICAL EXAMPLE

To illustrate the principle of the method, assume that an

automated vehicle (like a ship with autopilot) moves in

a plane to reached a target region. Let the dynamics be

approximately modeled by affine dynamics which differs

in different regions of the plane. The corresponding PWAP

system comprises three regions Θ(i), two continuous states,

and two continuous inputs. The regions can be seen from

the bold lines in Fig 2. Let the initial distribution of the

continuous state and the disturbances be given by:

x0 ∼ N (qx,0, Qx,0) with qx,0 =

[
−10
50

]

, Qx,0 =

[
1 0
0 1

]

,

vk ∼ N (0, Qv) with Qv =

[
0.02 0.01
0.01 0.02

]

,

and the continuous dynamics by:

A1 =

[
9.41 0.19
−0.38 9.99

]

10−1, B1 =

[
1.98 0.02
3.96 2.00

]

10−1

A2 =

[
9.22 0.19
−0.58 10.4

]

10−1, B2 =

[
1.96 0.02
4.02 2.04

]

10−1

A3 =

[
11.2 −0.21
0.42 9.79

]

10−1, B3 =

[
2.12 −0.04
0.04 3.96

]

10−1

G1 = G2 = G3 =

[
0.1 0.05
0.08 0.2

]

.

The second and third subsystems have unstable state ma-

trices. The inputs uk are constrained according to: −4 ≤
u1,k ≤ 4, −8 ≤ u2,k ≤ 4. and the target set de-

fined to: T = ε

(

0,

[
0.96 0.64
0.64 0.8

])

. The algorithm 5.1 is

parametrized by δ = 0.95, πmin = 0.01, α0 = 10−4,

ω = 0.8 and ρ = 0.98. The cost function is selected

to J = trace

([
Sk+1 0
0 w1‖qk+1‖

])

with w1 = 0.8 (and

w2 = 0).

For the ship example mentioned in Sec. I, the PWAP

model can be interpreted as different ship dynamics lin-

earized in different areas of the sea, assuming that wind

and water currents (as well as resulting model uncertainties)

differ regionally. The control task is to transfer the vessel

665
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Θ(3)

x1

x2

Xδ
0

branching

T

Fig. 2. Control result for the example: The initial confidence set with
mean vector [−10, 50]T is steered to the origin in 30 iterations. Branching
occurs after 3 steps with ǫ(γ1) = 0.89 and ǫ(γ2) = 0.11.

from an initial position, which might be randomly distributed

around an expected value (due to imprecise localization) to a

target region. The proposed Algorithm 5.1 is able to compute

a control law while considering the different dynamics in

each region and the stochastic disturbances.

The successful termination the synthesis algorithm is

shown in Fig. 2, illustrating the confidence reachable sets

Xδ
k . Three iterations after starting from Xδ

0 the ellipsoid

cannot be pushed into one region, thus Xδ
3 intersects with

Θ(3) and Θ(1), i.e. branching is required with shares ǫ(γ1) =
0.89 and ǫ(γ2) = 0.11. For the subsequent iterations, the

SDP has to be solved for the two branches, while the

evolution of the confidence sets converge to each other. This

attractiveness follows from the Lyapunov condition (20b)

within the SDP problems. The transition from Θ(1) to Θ(2)

proceeds without branching. After N = 30 iterations, the

confidence reachable sets of both branches are contained in

the terminal set T, and the algorithm terminates successfully.

The overall time of computation is 48 sec on a standard

PC (Intel Core i7 − 6700 CPU, 16GB RAM, and Matlab

2016a). The SDP problem is built with YALMIP and solved

by MOSEK. So far, numerical examples up to a dimension

of n = 6 have been successfully solved with Algorithm 5.1.

VII. CONCLUSION

This paper presents an algorithmic procedure to synthesize

stabilizing control laws for PWAP systems. The procedure

is based on probabilistic reachable set computation, and the

proposed procedure formulates a semi-definite program in

each time step to obtain a control law for set-to-set transitions

of confidence reachable sets. The challenging case, where

the confidence sets intersect with more than one partition is

tackled by a branching procedure, which splits the confidence

sets. To avoid the additional computational effort obtained for

branching, a preceding step aims at pushing the confidence

sets into one region. If this attempt fails, branching is

unavoidable. The worst-case situation is that branching is

needed in every time step k, leading to exponential growth

of the computational effort. Thus, future research will explore

possibilities of merging different branches using appropriate

Lyapunov functions with the SDP problems.
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