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Abstract— For the optimal point-to-point control of a
discrete-time linear system in a time varying non-convex
environment, this paper investigates how such problems can
be handled online. An illustrative example is that of steering
a robotic end-effector from an initial to a final state, while
executing the motion free of collision in the presence of a human
worker. The challenge is to obtain a solution with low effort,
to be online applicable, while maintaining a close to optimal
solution. The proposed method consists of first computing a
range of trajectories, homotopic to the optimal unconstrained
solution offline. Then, upon detection of an obstacle which may
block the currently executed trajectory, an offline synthesized
controller steers the system quickly to a desired homotopic
trajectory. The resulting trajectory is free of collision and is
determined by a fast iterative procedure.

I. INTRODUCTION

The scope of this paper is to control linear time-discrete

systems from an initial state to a target state while avoiding

collisions with time-varying obstacles and additionally sat-

isfying input constraints. A motivating example is that of a

robotic manipulator which has to accomplish tasks in two

different positions and has to move between these points.

Assume that, a human worker operates in the same region

and may block the manipulator in its motion between the

two positions. For human robot cooperation in industrial

processes, this scenario is of great interest in order to

combine the advantages of human flexibility and robotic

precision. If a human moves fast, the robotic manipulator

depends on techniques that compute circumventing trajecto-

ries quickly, while considering its actuator saturations, and

the performance of reaching.

The objective of this paper is to explore means to decom-

pose the problem into an offline and online part, while the

latter has acceptably small computation times.

Linear model predictive control (MPC) naturally handles

constraints by linear and or quadratic optimization techniques

[12]. These methods are commonly used in process industry

and other areas. In recent years, considerable effort has

been spent to speed up MPC by using soft constraints [18],

[16], move blocking strategies [6], which fix the inputs

over a certain period of time, or direct multiple shooting

methods [10], which exploit the structure of Hessian and

Jacobian matrices. In addition, methods such as explicit

MPC were developed, which compute control laws offline by

partitioning the state space [19]. These methods are limited

to low system dimensions and/or time horizons. While for
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problems with convex search space, significant progress

has been made, the fast online computation for the non-

convex case remains challenging. In the case of the robot

example described above, non-convexity originates from the

presence of an obstacle. To solve this problem, nonlinear

optimization techniques such as SQP [14] or mixed-integer

programming (MIP) [2], [4] can be applied. The well known

Big-M formulation [17] can be applied to separate the free

space from the obstacle with binary variables and then

solve the problem with branch-and-bound or branch-and-cut

techniques. When the considered time horizon is additionally

chosen large enough to obtain a feasible solution, the method

becomes impractical for many applications with real-time

requirements.

With respect to planning in non-convex state-spaces, a

variety of publications originates from the field of human

robot interaction. Important candidates of this field are po-

tential field methods [9], cell-decomposition methods [13],

but also sampling based approaches like rapidly exploring

random trees (RRT) [11] and RRT* [8], [5]. However, these

methods have in common that they do not consider the

system dynamics.

In contrast to the existing work, the approach presented in

this paper achieves low computation times for the named

problem by using homotopy properties. A finite set of

different trajectories is computed offline, which spans a

region for circumventing the human worker in operation.

Then, a homotopic trajectory inside the spanned region is

determined online such that it passes the obstacle optimally

without collision. Thus, the robotic manipulator drives from

its actual position to the homotopic trajectory by means

of offline computed time-varying state feedback controllers.

Since dynamic systems, like the one described here, are

usually subject to actuator limitations, the offline computed

state feedback controllers are synthesized with respect to

this input saturations. Formulations for consideration of input

constraints in controller synthesis can be found in [3] and [7].

In literature, the use of homotopy properties in optimization

is limited to unconstrained cases and solution by model

approximation, i.e. to cases which are quite distinct from

the setting considered here, see e.g. [15].

The following parts of the paper first introduce the con-

sidered type of homotopic functions (Sec. II), then formulate

the problem (Sec. III), describe the offline computations

(Sec. IV), explain the online collision avoidance by control-

ling the system to homotopic trajectories (Sec. V), and show

numerical results (Sec. VI).
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II. HOMOTOPIC FUNCTIONS

The dynamics considered is that of discrete-time linear

systems:

xk+1 = Axk +Buk, (1)

with states xk ∈ R
nx , inputs uk ∈ R

nu , A ∈ Rnx×nx , B ∈
Rnx×nu , and the time index k ∈ N0. Given a finite time

domain T = {0,1, . . . ,N}, N ∈N, let the state and input tra-

jectory be denoted by x̂ = (x0, ...,xN) and û = (u0, ...,uN−1).
Consider nc +1 pairs of trajectories (ûi, x̂i), indexed by i,

with i ∈M := {0,1, ...,nc}. Let X := {x̂0, . . . , x̂nc} denote

the set of state trajectories, assuming that for any pair x̂i,

x̂ j, i �= j in M the trajectories differ. The initial state xi
0 at

time k = 0 is chosen to be equal for all trajectories i ∈M
and the same applies to the final state xi

N . Let x̂0 denote

the trajectory in X which is optimal with respect to a given

performance criterion. The other trajectories in X are called

base trajectories and are chosen to span a region (around

x̂0) in which circumvention of an obstacle is possible, if x̂0

intersects with the latter. Now interpret the trajectories x̂i as

the images of functions: x̂i = Fi(ûi). The following definition

defines homotopic trajectories in between of the trajectories

x̂i.

DEFINITION II.1 For a set of nc + 1 continuous functions

Fi :Rnu×T →R
nx×T , i∈M , a vectorized homotopy is defined

by H :
(
R

nu×T
)nc × [0,1]nc → R

nx×T . The second argument

is a vector of homotopy parameters λλλ = (λ 1, ...,λ nc)T with

λ i ∈ [0,1]. The linear vectorized homotopy function is given

with F = (F1(û1)−F0(û0), ...,Fnc(ûnc)−F0(û0))T and with

λ 0 := 1−∑
nc

i=1 λ i according to:

H(û0, . . . , ûn
c,λλλ ) =

nc

∑
i=0

λ i ·Fi(ûi)

= F0(û0)+
nc

∑
i=1

(Fi(ûi)−F0(û0)) ·λ i = F0(û0)+F ·λλλ (2)

�

Equation (2) shows that the homotopy can be understood

as a linear interpolation between the optimal and base

trajectories using the weights λ i. A trajectory x̂i ∈ X is

obtained for λ i = 1, while the other components of the vector

λλλ are set to zero (i.e. the trajectory lies in the boundary of

the homotopic space). While (2) formulates the homotopy

between complete trajectories, the homotopy of a single

point of time k can be specified by introducing matrices

Dxk
= [x1

k − x0
k , ...,x

nc

k − x0
k ] ∈ R

nx×nc , k ∈ T , and likewise

Duk
= [u1

k − u0
k, ...,u

nc

k − u0
k ] ∈ R

nu×nc . The state xi
k denotes

the state of the i-th trajectory at time k. The same applies to

ui
k for the input. Homotopic states and inputs at time k can

then be written as:

xk(λλλ k) := x0
k +Dxk

λλλ k, uk(λλλ k) := u0
k +Duk

λλλ k, (3)

with λλλ k := (λ 1
k , ...,λ

nc

k )T ∈R
nc denoting the vector of homo-

topy parameters at time k. A constant homotopy vector over

time is denoted by λ̄λλ , and the corresponding trajectories are

then denoted by x̂(λ̄λλ ) and û(λ̄λλ).

III. PROBLEM DEFINITION

Consider the case, in which system (1) follows the optimal

trajectory x̂0 from x0 towards xN until an obstacle Px :=
{x| Cx≤ d} ⊆ R

nx , with C ∈ R
c×nx and d ∈ R

c, is detected

at time k∗ ∈ {1, . . . ,N−1}, such that x̂0 can not be followed

further. Within this paper, Px is assumed to be static for all

k ∈ {k∗, . . . ,N}, i.e. after detection. To allow for a feasible

solution, x0
k∗ /∈ Px and x0

N /∈ Px is required. The goal

is to compute an optimized trajectory x̂∗ = (x∗k∗ , ...,x
∗
N) ∈

R
nx×(N+1−k∗) and û∗ = (u∗k∗ , ...,u

∗
N−1) ∈ R

nu×(N−k∗), while

avoiding any collision with the polytope, ensuring xN = x f ,

and additionally satisfying the input constraints uk∗+ j ∈U ⊆
R

nu for all j ∈J := {0, . . . ,N−1−k∗}. Based on the selec-

tion of the optimal trajectories by a quadratic performance

criterion, the optimization problem can be summarized to:

min
xk∗+ j , uk∗+ j

N−1−k∗

∑
j=0

(xk∗+ j− x f )
T Q(xk∗+ j− x f )

+ (uk∗+ j− u f )
T R(uk∗+ j− u f ) (4)

s.t. (1), uk∗+ j ∈U , xk∗+ j /∈Px, ∀ j ∈J (5)

xk∗ = x0
k∗ , xN = x f , (6)

with suitable positive-definite weighting matrices Q∈R
nx×nx

and R∈R
nu×nu . The values xk∗+ j and uk∗+ j denote the states

and inputs at time k∗+ j, with j ∈J denoting the future

time steps counting from k∗.

The problem stated here is a non-convex problem. A

possible approach is, as remarked in Sec. I and illustrated in

Sec. VI for an example, to solve the problem by MIP, here

specifically mixed integer quadratic programming (MIQP).

In terms of the computation time, the problem is in most

cases costly to solve, since solvers e.g. using branch and

bound techniques need to be used. These solve problem

instances with integer variables encoding the separation of

the free from the occupied space. Large numbers of time

steps increase the computation times for these methods con-

siderably by reasons of an increase number of integer vari-

ables. The objective of the presented method is to compute

optimized trajectories according to the criteria stated above

with significantly lower computational effort as with MIQP.

The idea is to (i) select a desired homotopic trajectory x̂(λ̄λλ )
and (ii) to employ offline computed controllers that realize

the transition from the current to the desired trajectory. For

enabling that a solution to the problem can be found in

step (i), a necessary condition is made in the following

assumption.

ASSUMPTION III.1 Let the set of trajectories X contain at

least one trajectory x̂i ∈X such that for xi
k∗+ j ∈ x̂i it holds

that, xi
k∗+ j /∈Px, ∀ j ∈J .

This assumption is justified by the fact that a circumven-

tion of Px is not possible, if the whole admissible space

(constructed by X ) is blocked. Nevertheless, the assumption

is not sufficient for finding a feasible solution, since it must

be ensured also in step (ii) that the transition to λ̄λλ is achieved

without intersecting Px.
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IV. OFFLINE CONTROLLER SYNTHESIS

This sections deals with the offline part of the solution

procedure, i.e., the computation of controllers to transfer the

system to a new homotopy vector λ̄λλ . To accomplish this

goal, the system (1) has to be transformed into the homotopy

space, leading to a linear time-varying (LTV) system. Based

on this, semi-definite programming is used to synthesize state

feedback controllers for realizing transitions within the λλλ -

space.

A. Transformation of the system dynamics into the homotopy

space

The goal is to steer the system (1) from the state xk∗ , which

corresponds to the current homotopy vector λλλ k∗ , to a target

trajectory determined by λ̄λλ . With the offline computation,

the corresponding input trajectories of the optimal and base

trajectories are known from (3). Aiming to transition from

λλλ k∗ , to λ̄λλ , additional inputs δuk are required, leading to:

ũk(λλλ k) := uk(λλλ k)+ δuk. (7)

Because of the additional input term δuk, the superposition

may lead to signals ũk(λλλ k) which are not in the set of the

homotopic input trajectories according to (3). Therefore, the

controller synthesis later (Sec. IV-B) addresses this issue.

The system dynamics can be described dependent on λλλ k,

by inserting xk(λλλ k) according to (3) and ũk(λλλ k) as in (7),

into (1):

xk+1(λλλ k+1) := Axk(λλλ k)+Bũk(λλλ k), (8)

With (3), (7), and (8), the system can be further transformed

for k ∈ {0, ...,N− 1} to:

Dxk+1
λλλ k+1 + x0

k+1 = A(x0
k +Dxk

λλλ k)+B(u0
k +Duk

λλλ k + δuk)
(9)

⇔ Dxk+1
λλλ k+1 = (ADxk

+BDuk
)λλλ k +Bδuk (10)

⇔ Dxk+1
λλλ k+1 = Dxk+1

λλλ k +Bδuk. (11)

The last equation is an LTV-system with the homotopy vector

λλλ k+1 denoting the new homotopy vector, with input δuk, and

the time-dependent and bounded matrix Dxk+1
.

ASSUMPTION IV.1 The number of base trajectories equals

the system dimension: nc = nx.

This assumption1 is introduced in order to obtain a full-

dimensional space for the circumvention of Px. It implies

that Dxk
∈ R

nx×nx is quadratic and its inverse D−1
xk

is non-

singular (since the trajectories in X differ, see Sec. II). Thus,

λλλ k+1 can be represented explicitly by:

λλλ k+1 = λλλ k +D−1
xk+1

Bδuk, (12)

and it describes the transition between trajectories, when

the additional input δuk acts. To ensure that any homotopic

future state xk+1(λλλ k+1), in k + 1, can be reached from

xk(λλλ k), the system has to be fully controllable in one step.

This requires nu = nx and a full rank of B, leading to a

controllability matrix CAB = [B,AB, ...,An−1B] with full rank.

1The case of nc > nx, or nc < nx can be a suitable alternative to enlarge
or reduce the homotopy space, but is not considered here for brevity.

B. Fast converging LTV-System Controller Synthesis with

Input Constraints

To obtain a fast online control procedure, which addition-

ally satisfies input constraints, an explicit control law with

time varying matrices Kk ∈ R
nu×nx is synthesized offline:

δuk :=−Kk(λλλ k− λ̄λλ ). (13)

The control law enables the transition from a value λλλ k to

a desired value λ̄λλ , or respectively, to an offline computed

homotopic target trajectory x̂(λ̄λλ ). The synthesis of the con-

troller matrices Kk which need to be able to steer the system

between any arbitrary combination λλλ k and λ̄λλ is explained

next. To make full use of the permissible input range, the

controller is designed to perform the transition phase from

the current trajectory to a desired homotopic one as fast

as possible. The synthesis is based on Lyapunov stability

conditions and input saturations, formulated as linear matrix

inequalities (LMI’s). λ̄λλ is assumed to be known here; its

computation is covered later in Sec. V.

The closed-loop delta-system of (12), with δλλλ k+1 =
λλλ k+1− λ̄λλ and control law (13) is defined by:

δλλλ k+1 = (I−D−1
xk+1

BKk)δλλλ k. (14)

Let a quadratic Lyapunov function, with matrix P = PT >
0 ∈ R

nc×nc , be given by:

Vk = δλλλ
T
k Pδλλλ k. (15)

The LTV-system (14) becomes stable with given decreasing

rate parametrized by the matrix Q−1
c > 0 ∈ R

nc×nc , if the

following condition holds:

Vk+1−Vk ≤−δλλλ T
k Q−1

c δλλλ k. (16)

By defining the vector q = (1/q1, ...,1/qnc)
T ∈ R

nc , the

matrix Q−1
c is given as follows:

Q−1
c := diag(q). (17)

Here, diag(q) denotes the diagonal matrix obtained from the

vector q. The goal is, to determine the controllers such that

the decrease of the homotopy parameter δλλλ converges fast

to zero, which means that the transition phase between the

actual and the desired trajectory becomes short. However,

fast convergency of δλλλ forces high input signals. During the

transition phase, it should be guaranteed that the resulting

total input signal (7) is bounded. As being addressed in

[3], the norm of each component ũk,s(λλλ k), with index s ∈
{1, ...,nu} denoting the s-th component of the input vector

ũk(λλλ k), is bounded by an upper bound us ∈ R>0. The input

constraint is valid for all times k and given by:

‖ũk,s(λλλ k)‖ ≤ ‖us‖. (18)

Since the norm of each component is bounded, the constraint

bounds the input symmetrically in the positive and negative

range. Consider now the ellipsoidal set:

E (P) := {δλλλ k ∈ R
nc | δλλλ

T
k Pδλλλ k ≤ 1}, (19)
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or equivalently:

E (P) := {P−
1
2 z| ‖z‖ ≤ 1}. (20)

DEFINITION IV.1 The ellipsoidal set E (P) denotes the

region of asymptotic stability of the LTV closed-loop delta

system (14), if (16) holds. �

Introducing a set C with elements γγγ i ∈R
nc , i∈M . The set

C contains all possible corners of the homotopy vector λλλ k

denoted by the vectors γγγ i. Hence, the region of permissible

λλλ k is given by the convex hull of C , thus λλλ k ∈Co{C }. The

same holds for the desired homotopy vector λ̄λλ ∈Co{C }. The

feasible region of the difference vector δλλλ k is given by the

convex hull δλλλ k ∈Co{D}, with D := {dw|dw = λλλ k− λ̄λλ ,λλλ k ∈
C , λ̄λλ ∈ C }, where w ∈ {1, ..., |D |} selects the w-th element

dw of the set D . |D | denotes the cardinality of D .

As argued in [3], an LTV system is Lyapunov-stable,

if the Lyapunov stability condition (16) is satisfied for all

k ∈ {0, ...,N−2}, with its time dependent, bounded matrices

given by Dxk
. The input constrained controller synthesis task

can be formulated as the following optimization problem for

all k ∈ {0, ...,N− 2} and input components s ∈ {1, ...,nu}:

max
P, Kk , Qc,δλλλ k

trace(Q−1
c )+ trace(P) (21)

s.t. Vk+1−Vk ≤−δλλλ k
T

Q−1
c δλλλ k (22)

‖ũk,s(λλλ k)‖ ≤ ‖us‖ ∀λλλ k ∈ Co{C }∀λ̄λλ ∈Co{C } (23)

δλλλ
T
k Pδλλλ k ≤ 1,∀δλλλ k ∈ Co{D} (24)

P > 0, Qc > 0. (25)

The objective of the optimization problem is to determine

a fast converging controller, as enforced by (22) and the

cost term trace(Q−1
c ). Meanwhile, the input constraints (23)

have to be satisfied for all combinations of λλλ k, λ̄λλ and each

component indexed by s of the input vector. Since the input

signal depends To make full use of the available input range,

the ellipsoidal region of stability (24) has to be shrinked up to

the permissible region δλλλ k ∈Co{D}, which is applied by the

cost term trace(P). Then, the input signal becomes exhausted

by demanding a high decrease in the Lyapunov function as

mentioned before. The size and shape of an ellipsoid can

generally be minimized by different criteria. Here, the size

of E (P) is minimized by minimizing the sum of the semi-

axes, what equals to maximize the trace of the shape matrix

trace(P). How fast the controller can drive the system to

a desired homotopy value is therefore limited by the input

constraints.

Due to the non-convexity in (22), (23), and (24), caused by

the multiplication of δλλλ k with other variables, the problem

is hard to solve in its original form. It can be shown, though,

that the optimization problem can be formulated as a convex

semi-definite program.

LEMMA IV.1 The non-convex constraint (22) can be trans-

formed into:

(I−D−1
xk+1

BKk)
T P(I−D−1

xk+1
BKk)−P+Q−1

c ≤ 0, (26)

with P = Y−1 and Kk = LkY
−1, if Y = Y T > 0 ∈ R

nc×nc and

Lk ∈ R
nu×nc exist for all k ∈ {0, ...,N− 2}. Then, the LMI:⎡

⎣ Y (Y −D−1
xk+1

BLk)
T Y T

Y −D−1
xk+1

BLk Y 0

Y 0 Qc

⎤
⎦> 0, (27)

holds with 0 denoting zero matrices of appropriate dimen-

sion.

Proof. By inserting the Lyapunov functions (15) for times

k and k+ 1 into (22), and by substituting δλλλ k+1 according

to the difference equation (14), the inequalities (26) are ob-

tained. Now, using the substitution Y = P−1 and multiplying

(26) from the left and right with Y leads to:

(Y −D−1
xk+1

BKkY )
TY−1(Y −D−1

xk+1
BKkY )−Y

+Y T Q−1
C Y < 0.

(28)

Applying the Schur complement to (28) yields:⎡
⎣ Y (Y −D−1

xk+1
BKkY )

T Y T

Y −D−1
xk+1

BKkY Y 0

Y 0 Qc

⎤
⎦> 0, (29)

for which the substitution Lk =KkY completes the proof.

LEMMA IV.2 The input constraint (23) can be conservatively

approximated by the following LMI:[
Y LT

k,s

Lk,s (‖us‖−‖u
0
k,s+Duk,s

λλλ k‖)
2,

]
≥ 0, (30)

∀λλλ k ∈ C , s ∈ {1, ...,nu}

which is valid for every component s of the input vector and

for all corners of the permissible region of λλλ k given by the

set C . The index in Duk,s
and Lk,s denotes the s-th row of

the corresponding matrix.

Proof. By inserting (13) and (3) into (7), the input inequality

(18) can be written as:

‖u0
k,s+Duk,s

λλλ k−Kk,sδλλλ k‖ ≤ ‖us‖, (31)

for each input component. Matrix Kk,s denotes the s-th row of

matrix Kk. With the triangle inequality ‖a+b‖ ≤ ‖a‖+‖b‖,
(31) becomes:

‖u0
k,s +Duk,s

λλλ k‖+ ‖Kk,sδλλλ k‖ ≤ ‖us‖. (32)

Now, to satisfy these constraints for all δλλλ k ∈Co{D}, δλλλ k is

replaced by the stabilizing ellipsoid (20), which is a superset

of the permissible region of δλλλ k. Hence, E (Pk) ⊇ Co{D},
and (32) becomes:

‖u0
k,s +Duk,i

λλλ k‖+ ‖Kk,sP
− 1

2 z‖ ≤ ‖us‖. (33)

Replacing P = Y−1, assigning Kk,s = Lk,sY
−1 and squaring

the inequality on both sides yields:

||Lk,sY
− 1

2 z||2 ≤ (‖us‖−‖u
0
k,s+Duk,s

λλλ k‖)
2, (34)

||Lk,sY
− 1

2 ||2||z||2 ≤ (‖us‖−‖u
0
k,s+Duk,s

λλλ k‖)
2, (35)

Lk,sY
−1LT

k,s ≤ (‖us‖−‖u
0
k,s+Duk,s

λλλ k‖)
2, (36)
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what results in (30) by applying the Schur complement.

LEMMA IV.3 Inequality (24) holds for all δλλλ k, when the

following LMI holds:[
Y dw

dT
w 1

]
≥ 0, ∀dw ∈D , w ∈ {1, ..., |D |}. (37)

Proof. The delta homotopy vector δλλλ k can be determined

from the convex linear combination of vectors dw ∈ D by

the following polytopic description:

δλλλ k = ∑
w

μk,wdw, (38)

with weight μk,w for time k, and ∑w μk,w = 1, μk,w ≥ 0. Thus:

(∑
w

μk,wdw)
T P(∑

w

μk,wdw)≤ 1, (39)

holds if all corners dw of the polytopic description satisfy

the inequality, hence leading to:

dT
wPdw ≤ 1, ∀dw ∈D , w ∈ {1, ..., |D |}. (40)

Replacing P=Y−1 and applying the Schur complement, (40)

is converted into (37). It follows that E (P) is a stabilizing

region of the saturated system for all permissible δλλλ k.

The convex reformulation of the original constraints (22)-

(24) leads to the LMI’s (27), (30), (37), with variables Lk,

Qc and Y . On the other hand, the cost function (21) still

contains the inverse variables P = Y−1 and Q−1
c , i.e. it has

to be suitably transformed to obtain a solution at all.

LEMMA IV.4 The objective (21) with the reformulated

constraints (27), (30), (37) can be cast into a minimization

problem, in which the objective of the problem no longer

contains the inverse forms of the variables Lk, Qc and Y :

min
Y, Lk, Qc

trace(Qc)+ trace(Y ) (41)

s.t. (27), (30), (37), Y > 0, Qc > 0. (42)

for all k ∈ {0, ...,N− 2}.

Proof. Given a matrix W ∈R
n×n with W =W T , W > 0, the

inequality:

trace(W−1)≥ trace(W )−1 (43)

holds. With (43) and P = Y−1, a lower bound of the cost

function (21) can be given by:

f (Qc,Y ) := (trace(Qc))
−1 +(trace(Y ))−1. (44)

Since (44) is strictly monotonically decreasing, it can be

shown that the inverse function:

g(Qc,Y ) :=
1

f (Qc,Y )
=

1

(trace(Qc))−1 +(trace(Y ))−1
,

(45)

is strictly monotonically increasing, and the maximization

problem can be cast into the minimization problem:

min
Y,Lk,Qc

g(Qc,Y ) (46)

s.t. (27), (30), (37), Y > 0, Qc > 0. (47)

An upper bound of g(Qc,Y ) is obtained by applying the tri-

angle inequality 1
a+b

≤ 1
a
+ 1

b
(for a,b > 0) to (45), yielding:

g(Qc,Y ) :=
1

trace(Qc)−1
+

1

trace(Y )−1
, (48)

or respectively:

g(Qc,Y ) = trace(Qc)+ trace(Y ), (49)

what completes the proof.

The optimization problem determines time-depending con-

troller matrices Kk =LkY
−1 which guarantee a fast stabilizing

transition between the trajectories, while handling the input

constraints. The determined controllers are optimal for all

λλλ k, λ̄λλ ∈ Co{C }, since they are the optimal solution of

the convex semidefinit program. The computation can be

performed with standard solvers like MOSEK [1].

V. ONLINE CONTROL STRATEGY

The online procedure starts with obstacle detection at time

k∗, and it consists of two parts: In the first part, the np vertices

pl of a vertex representation Px,v := {pl ∈ R
nx | l ∈ N ≤

np}= {p1, ..., pnp} of the obstacle polytope Px are mapped

into the homotopy space, denoted by Pλ̄λλ ,v. This is motivated

by selecting a desired trajectory λ̄λλ , which is outside of the

convex hull of Pλ̄λλ ,v, denoted by Pλ̄λλ := Co(Pλ̄λλ ,v). The

second part then selects a suitable λ̄λλ which also guarantees

that the transitions from λλλ k∗ to λ̄λλ for the system (14) is free

of collision.

A. Transforming Px,v into the Homotopy Space

DEFINITION V.1 Let λ̄λλ (pl) ∈ R
nc denote the vector of

constant homotopy parameters which refers to the trajectory

x̂(λ̄λλ (pl)) that runs from the initial state x0 through the

vertex pl of Px,v to the final state x f , while avoiding any

intersection with the interior of Px. The set of all vertices

pl of Px,v mapped into the homotopy space is denoted by

Pλ̄λλ ,v. �

The mapping of a vertex pl into λ̄λλ (pl) is performed for

every vertex pl ∈ Px,v, and is realized by the operation:

mapping(pl). The operation mapping(pl) computes these

homotopy values λ̄λλ (pl) in an iterative procedure. Since a

vertex pl can be located between to time steps of the homo-

topic values xk(λλλ k) and xk+1(λλλ k+1), this is also considered in

the mapping procedure. For the sake of brevity, the detailed

algorithmic procedure of mapping(pl) is not explain in this

work, but only summarized by the abstract Algorithm 1.

Algorithm 1 Vertex mapping

1: Given: x̂i, with i ∈M and Px,v

2: for all pl ∈Px,v do

3: • λ̄λλ (pl)←mapping(pl)
4: • Pλ̄λλ ,v ←Pλ̄λλ ,v

⋃
λ̄λλ (pl)

5: end for
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B. Online trajectory determination

In the online selection, a desired homotopy value λ̄λλ :=
λ̄λλ(pl) ∈ Pλ̄λλ ,v is selected such that the offline computed

controllers Kk∗+ j, j ∈J drive the system from xk∗ to the

trajectory x̂(λ̄λλ(pl)) which passes the obstacle through the

vertex pl to the final state x f . With respect to the λλλ -space,

this equals the transition from λλλ k∗ to λ̄λλ (pl). That vertex pl is

chosen which incurs the lowest costs J(λ̄λλ ) for the resulting

trajectory, and which is free of collision also for the transient

behavior. To formulate the costs depending on the homotopy

parameter, i.e. as J(λ̄λλ ), the values xk∗+ j and uk∗+ j in (4) are

replaced by xk∗+ j(λλλ k∗+ j) and ũk∗+ j(λλλ k∗+ j) according to (3)

and (7). With (13) and (14), the transformed costs result to:

J(λ̄λλ) =
N−1−k∗

∑
j=0

(xk∗+ j(λλλ k∗+ j)− x f )
T Q(xk∗+ j(λλλ k∗+ j)− x f )

+ (ũk∗+ j(λλλ k∗+ j)− u f )
T R(ũk∗+ j(λλλ k∗+ j)− u f ) (50)

s.t. xk∗+ j(λλλ k∗+ j) = x0
k∗+ j +Dxk∗+ j

λλλ k∗+ j (51)

ũk∗+ j(λλλ k∗+ j) = uk∗+ j(λλλ k∗+ j)+ δuk∗+ j (52)

δuk∗+ j =−Kk∗+ j(λλλ k∗+ j− λ̄λλ ) (53)

δλλλ k∗+1+ j = (I−D−1
xk∗+1+ j

BKk∗+ j)δλλλ k∗+ j (54)

j ∈J . (55)

DEFINITION V.2 Let ΛΛΛ denote the set of vertices Pλ̄λλ ,v

in ascending order of the costs J(λ̄λλ). An element of ΛΛΛ is

referred to by Λ(i). The first element Λ(1) has the lowest

costs. �

The procedure is shown in Algorithm 2: Starting from

the optimal trajectory with λλλ k = [0]nc at time k := k∗, the

optimal trajectory is checked against collisions with the

state space obstacle Px (line 4). If the trajectory intersects

with the obstacle, the vertices pl of Px,v are mapped into

the homotopy space according to Alg. 1 (line 5), followed

by sorting the set Pλ̄λλ ,v in order of increasing costs J(λ̄λλ),
resulting in the set ΛΛΛ (line 6). Now, the desired homotopy

value is set to λ̄λλ := Λ(1), the trajectory xk+ j(λλλ k+ j) is

computed according to (3) and (14) (line 8-10) and then

checked against collisions with Px (line 11). If this trajectory

is free of collision, the algorithm terminates directly with the

desired homotopy value λ̄λλ = Λ(1). If this is not the case,

the next element Λ(2) is chosen by incrementing i of Λ(i).
Hence, a new trajectory passing the obstacle along the vertex

Λ(2) (with higher costs) is computed and checked against

collision. This procedure is very quick, since besides of the

vertex mapping into the homotopy space, the rest (line 7-

end) of Alg. 2 simply checks trajectories successively against

collisions with Px. This has to be done in the worst case

for a maximum of |ΛΛΛ| trajectories, where |ΛΛΛ| denotes the

cardinality of ΛΛΛ. If no feasible λ̄λλ can be determined, i.e.

no corner of Px that can be passed without collision, Alg.

2 terminates with this result. Consequently, an emergency

braking routine has to be started which stops the system in

a save, collision free position.

VI. NUMERICAL EXAMPLE

In continuation of the robot scenario described at the
beginning, the robotic system is realized as a simple position
model with the nx = 3 states representing the three position
coordinates (x,y,z) of a robotic end-effector, and the nu = 3
inputs can affect the position. The matrices A, B of the
discrete-time system are determined to have the following
structure:

A = 1e−3 ·

⎡
⎣953 24 12

24 911 9.4
12 9.4 965

⎤
⎦ , B = 1e−4 ·

⎡
⎣967 −7 40
−7 1026 −46
40 −46 1057

⎤
⎦ ,

(56)

i.e. the system stable and fully controllable in one step. The

weighting matrix Q of the cost function in (4) is chosen

as the identity matrix, and R = 10 ·Q. The upper bound

on the norm of each component s of the input vector, as

stated in (18), is chosen as ‖ūs‖ = 15. The time horizon is

selected to N = 60, the initial state to x0 = xs = [0,0,0]T ,

and final state to xN = x f = [5,5,5]T , realized by uN = u f =
[0.5,2.7,0.7]T . With nc = 3, the set of trajectories is chosen

to: X = {(x̂0, û0),(x̂1, û1),(x̂2, û2),(x̂3, û3)}. The pair (x̂0, û0)
denotes the optimal solution of (4) for the case that no

obstacle Px is present. This trajectory is shown in Fig. 1

and is colored in magenta. The other nc base trajectories

in X are colored in black, and the polytope Px is shwon

as green box in Fig. 1. The scenario is to drive the robotic

end-effector from x0 to x f , while at k∗ = 10 the obstacle

Px is detected and remains static until the end time. The

green trajectory in Fig. 1 shows that the optimal trajectory

(magenta) is followed up to the detection of the obstacle at

k∗ = 10.

For the remaining 50 steps, the blue trajectory (see Fig.

1) is determined by the homotopy approach, passing the

obstacle along its lower right vertex. While the trajectory

transits to its final value λ̄λλ , the determined controllers ensure

Algorithm 2 Online control procedure

1: Set: k := k∗

2: Given: x0
k , λλλ k = [0]nc , λ̄λλ = [0]nc , Px, Px,v,

3: j ∈J := {0, ...,N− 1− k}
4: if ∃ j ∈J : xk+ j(λλλ k+ j) ∈Px then

5: • Map all vertices pl into the λλλ -space by Alg. 1

6: • Compute the set ΛΛΛ ordered according to J(λ̄λλ)
7: for i ∈ {1, . . . , |ΛΛΛ|} do

8: • Compute for all j ∈J the states

9: xk+ j(λλλ k+ j) according to (3) and (14)

10: with homotopy value λ̄λλ := Λ(i).
11: if ∃ j ∈J : xk+ j(λλλ k+ j) ∈Px then

12: Trajectory from λλλ k+ j to λ̄λλ is not feasible

13: else

14: Trajectory from λλλ k+ j to λ̄λλ is an optimized

15: feasible trajectory with λ̄λλ = Λ(i).
16: break

17: end if

18: end for

19: end if
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that the input constraints are satisfied. For comparison, the

example is also solved by applying mixed integer quadratic

programming (MIQP). The problem is formulated by the

well-known Big-M method to handle the non-convexity, and

the solution is shown as the red trajectory in Fig. 1. This

trajectory passes the obstacle along the lower edge o Px.

While the cost of the red trajectory is a lower compared to

the blue one, a significant reduction of the computation times

can be observed to the advantage of the homotopy approach:

The homotopy approach provides computation times around

1.7 milliseconds (ms) using a Matlab implementation, while

the MIQP method has an average computation time of 800

ms. The MIQP-based method is also implemented in Matlab

with embedded solution of the optimization problem by the

CPLEX solver. As a third alternative, an implementation as

a nonlinear problem with approximating the polytope as an

ellipsoid, was used and the solution takes approximately

2.5 sec. All methods are performed on an Intel Core i7

@3.4GHz.

VII. CONCLUSIONS

The paper has shown that homotopy properties can be used

to quickly compute optimized trajectories satisfying input

constraints, for the nonconvex problem of obstacle avoidance

in trajectory planning. The key idea is to separate the

problem into an offline part, including controllers synthesized

by semi-definite programming, and an online part, including

suitable reference trajectories (in terms of desired homotopy

values) are selected to pass the obstacle without collision.

The proposed method computes an optimized solution sig-

nificantly faster then methods like MIQP or NLP (as would

be used within MPC). It is shown that computation times are

nearly 3 orders of magnitude smaller, allowing the method

x1
x2

x3

Fig. 1. Simulation of the optimal trajectory x̂0 (magenta), the base
trajectories x̂1, x̂2, x̂3 (black), a part of the optimal trajectory (green), up

to k∗ = 10, the trajectory obtained by the homotopy approach x̂(λ̄λλ ) ( blue),
and the solution by MIQP (red). The polytope Px is the green area.

to be applicable to systems where small computation times

are crucial.

Future work extends this method to passing the obstacle

also across edges, and to further reduce the costs of the

circumvented trajectory. The method will also be extended

to the case of time varying obstacles and final states.
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