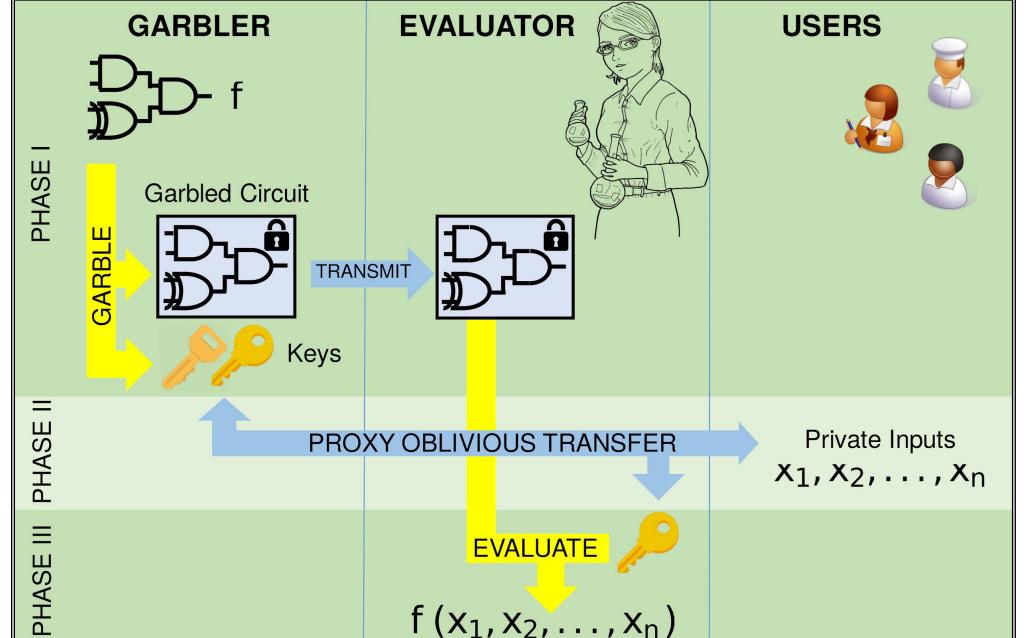
MaSSIF: Massively Scalable Secure **Computation Infrastructure Using FPGAs**

Northeastern University


Miriam Leeser, Mehmet Gungor, Kai Huang, Stratis Ioannidis

MOTIVATION

- Most computation is done on cloud with user private data
- Secure Function Evaluation (SFE) is needed to protect privacy of user data
- Accelerating compute times helps to make SFE practical
- Cloud services provide FPGA infrastructure so that SFE can be done on the cloud while protecting user's privacy
- We accelerate garbled circuits in the cloud

CHALLENGE

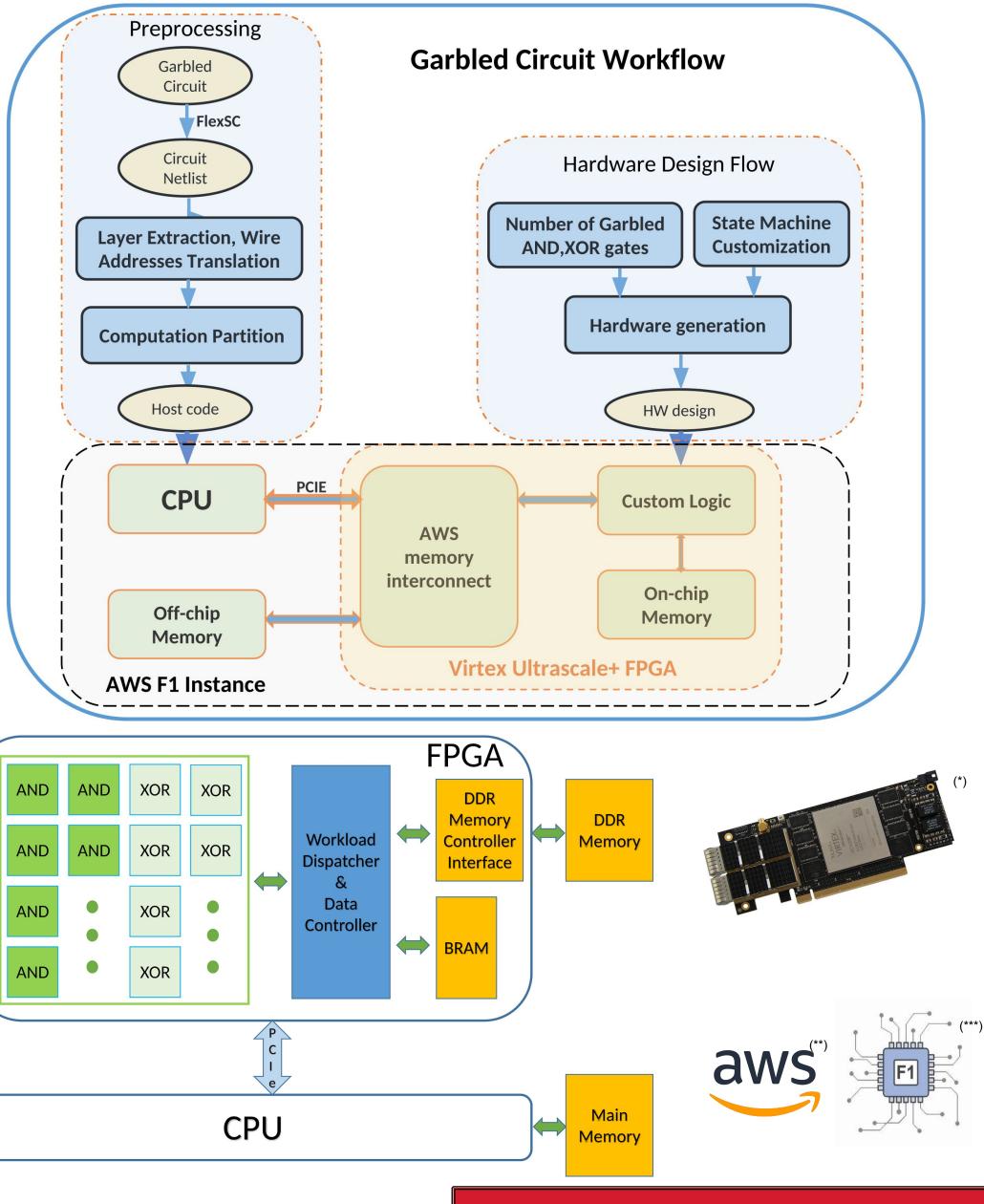
Garbled circuits are complex especially for large problems

Configuring an FPGA for each circuit or problem is impractical and time consuming

CONTRIBUTIONS

- We design a general hardware implementation for FPGAs that uses an "overlay" instead of designing specific hardware for each garbled circuit
- We propose a method to adopt and configure the mapping of a new user problem to FPGA hardware by remapping address registers; there is no need to generate a new hardware design.
- Our approach is flexible and can be applied to large problems while achieving hardware speed up compared to a software implementation
- Our hybrid design makes efficient use of both on-chip and off chin memory sunnorting large examples

EXPERIMENT RESULTS

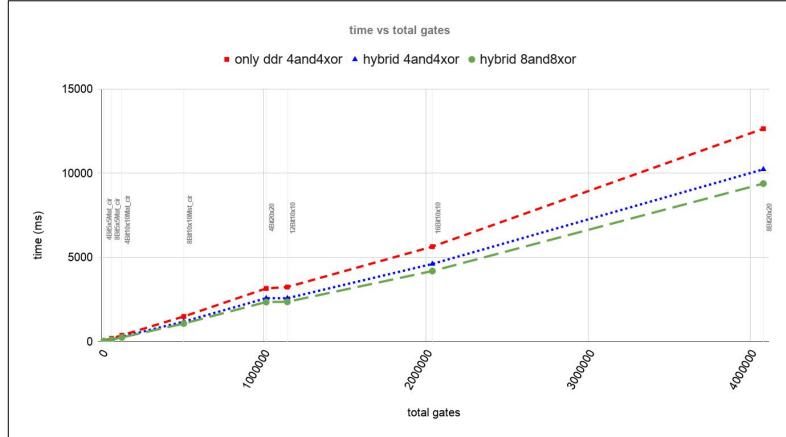

Our design gain speed up against software implementation is up to **28x** for million gate examples

	total g	gates 4 AND	4 XOR DDR	4 AND 4 XOI	R hybrid	speedup	8 AND 8	XOR	speedup					
								-	(over 4	and 4)				Ē
4bit 5×5 MM			45.48	29.47		1.54	26.4		1.12			AND	AND	
8bit 5 × 5 MM	630	00	184.23	111.74	ŀ	1.65	96.6	1	1.16					
4bit 10×10 MN	И 1260	000	368.22	283.86	<u>,</u>	1.30	242.5	55	1.17					ï
8bit 10×10 MN	А 5080	000 1	487.21	1180.49	9	1.26	1067.	35	1.11			AND	AND	
12bit 10×10 MI	M 1146	000 3	3234.93	2570.84	4	1.26	2356.	41	1.09			AND	AND	
16bit 10×10 M	M 2040	000 5	5636.27	4606.8	3	1.22	4185.	36	1.10					1
4bit 20 × 20 MN	A 1016	000 3	3153.26	2571.5	0	1.23	2346.	86	1.10					
8bit 20 × 20 MN			2638.08	10226.6		1.24	9378.		1.09			AND		
			ſ		Timino	t for total sy	stem with pytl	non (unit:	me)					
					11111112	5 101 total sy	stem with pyt	ion (unit.	.1115)			AND		
SOFTWARE VS BES	T FPGA IMPI	ΕΜΕΝΤΑΤΙΟΝ ΔΙ	L UNITS ARE MS	applications	Total	gar	bler	evaluator	r	gt transfer	=			
DOI I WARE VS DES		LEMENTATION. M	LE UNITS ARE MS	16Bit Adder	4.933	3.14		1.793		4.8×10^{-4}				_
	software	8 AND 8 XOR	speedup	30Bit Ham	18.032	11.0	686	6.341		4.8×10^{-3}				
4bit 5×5 MM	659.08	26.42	24.95	50Bit Ham	27.811	19.1	370	8.433		8×10^{-3}				
8bit 5×5 MM	2684.03	96.61	27.78	8Bit a*b	30.361	20.4		9.792		9.6×10^{-3}				
4bit 10 × 10 MM	5391.43	242.55	22.23	16Bit a*b	126.366	85		40.937		0.0397				
8bit 10 × 10 MM	22031.15	1067.35	20.7	32Bit a*b	515.867		0.713	165.993		0.161				
12bit 10 × 10 MM	49906.86	2356.41	21.18	64Bit a*b	2066.394		93.873	671.871		0.650				
16bit 10 × 10 MM	89392.44	4185.36	21.35	4Bit Sort10 Number	287.957		2.825	105.065		0.067				
4bit 20 × 20 MM	44466.74	2346.86	18.95	4Bit 5x5 Mat Mult	978.663		0.079	319.272		0.312				
				8Bit 5x5 Mat Mult	4003.290		34.033	1317.993		1.264		,		
				4Bit 10x10 Mat Mult	7984.151		01.426	2592.123		0.602				
				8Bit 10x10 Mat Mult	32587.864		031.146	10546.54		10.176				
				4Bit 20x20 Mat Mult	65173.249	438	68.833	21284.06	54	20.352				

GARBLER TIMING DDR VS HYBRID MEMORY DESIGN. ALL UNITS ARE MS

 $f(x_1, x_2, ..., x_n)$

WORKFLOW AND SYSTEM ARCHITECTURE



PUBLICATIONS

Timing for total system with software garbler and FPGA garbler in ms						
applications	Total(garbler sw)	Total(garbler FPGA)	Speed Up			
16Bit Adder	4.933	2.406	2.41			
30Bit Ham	18.032	7.290	2.47			
50Bit Ham	27.811	9.991	2.78			
8Bit a*b	30.361	11.33	2.68			
16Bit a*b	126.366	46.817	2.70			
32Bit a*b	515.867	189.910	2.72			
64Bit a*b	2066.394	768.183	2.69			
4Bit Sort10 Number	287.957	120.599	2.39			
4Bit 5x5 Mat Mult	978.663	365.063	2.68			
8Bit 5x5 Mat Mult	4003.290	1503.485	2.66			
4Bit 10x10 Mat Mult	7984.151	2960.941	2.70			
8Bit 10x10 Mat Mult	32587.864	12043.928	2.71			
4Bit 20x20 Mat Mult	65173.249	24271.066	2.69			

MM: Matrix multiplication total system: time : Time to garble, transfer and evaluate

MaSSIF repo link : https://github.com/RCL-lab/NU_MASSIF

- M. Gungor, K. Huang, X. Fang, S. Ioannidis, and M. Leeser, "Garbled circuits in the cloud using FPGA enabled nodes," in 2019 IEEE High Performance Extreme Computing Conference (HPEC) .IEEE, 2019,pp. 1-6.
- M. Leeser, M. Gungor, K. Huang, X. Fang and S. Ioannidis, "Accelerating Large Garbled Circuits on an FPGA-enabled Cloud", under submission.

Acknowledgment:

This research was supported by NSF grant CNS-1717213, and in part by a grant from Amazon Web Services, which supported our experimentation

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia

^(*) https://twinind.com/files/8315/0647/0723/XpressVUP image1.jpg (**) https://upload.wikimedia.org/wikipedia/commons/9/93/Amazon Web Services Logo.svg (***)https://d1.awsstatic.com/f1.ce891e39434406bc54217c6cd1385201d915b40a.JPG