Machine Learning for Cyber Physical Systems: the Good and Bad Uses

Overview
Cyber-physical Systems (CPS) integrate computing, networking, and control
facilitate smart-world systems. Machine Learning schemes, which have proven effective in numerous fields (robot automation, prediction, etc.) can be leveraged as intelligent solutions for problems
the complex and dynamic CPS.
Reinforcement Learning can make precise decisions automatically to maxim cumulative reward via systematic trial-and-error interactions in an unkno
environment. Reinforcement
Learning Methods (Z) Industrial Transportation CPS (X1) CPS (X2) Others (X3)
Reinforcement Learning Systems (Y1) Model-base Co-design (Y2) I I
Vetworking Control Computing Model-free
Co-design Cyber-Phys Systems (X)
Targets (Y)
Research Focus
Investigate existing research works that consider research problems in CPS an apply/adapt reinforcement learning algorithms as solutions.
Use reinforcement learning algorithms (e.g., Q-learning) to improve the performan
of Transportation CPS and Industrial CPS. Outline several promising future research directions for reinforcement learning
CPS, as well as machine learning in both good and bad uses.
Our Contributions
Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods.Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance
Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods.Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS.Outline and recommend research directions toward leveraging reinforcement learning
Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS.
Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods.Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS.Outline and recommend research directions toward leveraging reinforcement learning for CPS.
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning for CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS.
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routil efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning in CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routil efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning in CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic such as the flotation process control in mineral processing.
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning for CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic such as the flotation process control in mineral processing. Reinforcement learning for networking subsystems: Reinforcement learning has been adopted to address critical problems networking subsystems, including access management, routing, and resourcement
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning for CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic such as the flotation process control in mineral processing. Reinforcement learning for networking subsystems: Reinforcement learning has been adopted to address critical problems
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning in CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic such as the flotation process control in mineral processing. Reinforcement learning for networking subsystems: Reinforcement learning has been adopted to address critical problems networking subsystems, including access management, routing, and resour allocation, among others.
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning in CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatics such as the flotation process control in mineral processing. Reinforcement learning for networking subsystems: Reinforcement learning for computing subsystems: Reinforcement learning for computing subsystems: Reinforcement learning for co-design (i.e., networking-control, networking
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning in CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic such as the flotation process control in mineral processing. Reinforcement learning for networking subsystems: Reinforcement learning for computing subsystems:
 Propose a three-dimensional framework to investigate existing research works terms of CPS domains, targets, and reinforcement learning methods. Conduct two case studies leveraging reinforcement learning to: (1) solve routi efficiency problems in Transportation CPS, and (2) improve control performance Industrial CPS. Outline and recommend research directions toward leveraging reinforcement learning for CPS. Investigate good (benign) and bad (risky) uses of machine learning in CPS. Investigating Reinforcement Learning in CPS. Reinforcement learning in control subsystems: Controllers continuously supervise industrial systems for process automatic such as the flotation process control in mineral processing. Reinforcement learning for networking subsystems: Reinforcement learning for computing subsystems: Reinforcement learning for computing subsystems: Reinforcement learning for co-design (i.e., networking-control, networking

Xing Liu, Hansong Xu, Fan Liang, William Grant Hatcher, Weixian Liao and Wei Yu **Cyber Physical Networked System and Security Research Laboratory Department of Computer and Information Sciences, Towson University** Web: http://wp.towson.edu/wyu Email: wyu@towson.edu Acknowledgement: NSF CAREER Award - CNS-1350145

Two Case Studies	
Applying Q-learning to solve the routing efficiency problems in vehicul networks in Transportation CPS	ar
 Q-learning setup: 	
System states contain three parameters (i.e., vehicle distance, velocity diffe channel bandwidth).	erei
Actions are changing the modulation types (e.g., BPSK, QPSK, 16QAM, ar for all vehicles in the communication distance.	nd
Reward function is defined by the number of hops to the destination and th rate.	he
 Simulation setup: 	
> 200 vehicles, random data transmission rate, and vehicle velocity betw (Km/H) in three traffic conditions: <i>one-way road</i> (all vehicles move in one <i>two-way road</i> (all vehicles move in two (opposite) directions in two lanes), <i>road</i> (vehicle junction area).	di
Applying Q-learning to improve control system performance in Industrial C	CPS
 Q-learning setup: System states are temperature and trend of temperature change. 	
> Actions are changes to the rate of temperature increase/decrease.	
> Reward function is defined by the stability of the physical plant.	
Physical system (i.e., continuous stirred-tank reactor (CSTR)):	
> A feeder supplies raw material to the reactor.	
The flow rate of the steam pipe is controlled by the controller to heat the maintain a target reaction temperature.	e re
Experimental Results	
Q-learning for Networking	
In the top figure, we compare the Packet Delivery Rate of the rein learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV) and ad hoc on-demand distance vector and li	on-
	on- ink ari (Ol
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen In the bottom figure, we compare End-to-End Delay of RLAODV, A 	on- ink ari (Ol
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc or distance vector (AODV), and ad hoc on-demand distance vector and listance vector and listance vector (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio 	on- ink ari (Ol
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc or distance vector (AODV), and ad hoc on-demand distance vector and listance vector and listance vector (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenton In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenton AODVL under One-way Road, Two-way Road, and Cross-Road Scenton In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenton In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenton Interview Packet Delivery Ratio 	on- ink ari (Ol
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and list (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar 	on- ink ari (Ol
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and lit (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar 	on- ink ari Ol cios
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and lis (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio 	on- ink ari Ol cios
 learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and list (AODVL) under One-way Road, Two-way Road, and Cross-Road Scena In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Packet Delivery Ratio Group Road Filodovi Filodovi Filodovi Filodovi Group Road Group Road	on- ink ari Ol cios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen * In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Packet Delivery Ratio Packet Delivery Ratio Packet Delivery Ratio Packet Delivery Ratio Packet Delivery Road Packet Deliver	on- ink ari Ol cios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen * In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Packet Delivery Ratio Packet Delivery Ratio Packet Delivery Packet Delivery Ratio Packet Delivery Difference Delivery Difference Delivery Packet Delivery Packe	on- ink ari Ol cios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc or distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen * In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Packet Delivery Ratio Cross-Road Scenar Packet Delivery Ratio Cross-Road Scenar End-to-End Delay (s)	on- ink ari Ol cios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc or distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scen * In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio	on- ink ari Ol cios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and lis (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio	on- ink ari ari O fios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and lis (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio	on- ink ari ari O fios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Delivery Road Delivery Roa	on- ink ari (O) rio:
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar * In the bottom figure, we compare End-to-End Delay of RLAODV, A AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio	on- ink ari ari O tio *
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc or distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio One-way Road Delivery Ratio Delivery Different Maximum Velocity Different Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Delivery Ratio Deliv	on- ink ari ari O fios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc or distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Delivery Delivery Deli	on- ink ari Ol Tios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and lis (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio Packet D	on- ink ari Ol Tios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Patio	on- ink ari Ol Tios
learning-based ad hoc on-demand distance vector (RLAODV), ad hoc of distance vector (AODV), and ad hoc on-demand distance vector and li (AODVL) under One-way Road, Two-way Road, and Cross-Road Scenar AODVL under One-way Road, Two-way Road, and Cross-Road Scenar Packet Delivery Ratio	

