Magnetically Controlled Modular Cubes With Reconfigurable **Self-Assembly and Disassembly**

Aaron T. Becker¹, Minjun Kim² ¹ University of Houston, Houston, TX. ² Southern Methodist University, Dallas, TX

Motivation

- Seeks a new type of meso-scale manufacturing method
- Design of a scalable modular robotic platform and techniques for controlled self-assembly, disassembly, and reassembly
- The control methods developed in this program will be applicable in other meso-scale research areas for exploring structures, dynamics, and interactions of integrated materials

Design and Motion Modes

Design:

- Two variations of the modular cubes were designed and used for conducting experiments to explore reconfigurable modular robotics
- Two cube sizes were tested: 10 mm edge lengths and 2.8 mm edge lengths

o torque i

Pivot in steps 1-2 Pivot in steps 5-6

Pivot

Motion modes:

- One cycle of the rolling motion is achieved by four 90° steps of the applied magnetic torque \mathcal{I}_{χ}
- One cycle of pivot walking motion is achieved by six discrete steps

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022

UNIVERSITY of HOUSTON **Robotic Swarm Control Lab**

Biological, Actuation, Sensing, and Transport Laboratory

ISS #2130775 #2130793 Award ID#: