Magnetically Controlled Modular Cubes with Reconfigurable **Self-Assembly and Disassembly**

MinJun Kim¹ and Aaron T. Becker²

¹Southern Methodist University, Dallas, TX, ²University of Houston, Houston, TX.

Motivations

- Seeks a new type of mesoscale¹ manufacturing method
- Design of a scalable modular robotic platform and techniques for controlled self-assembly, disassembly, and reconfiguration
- The control methods developed in this program will be applicable in other mesoscale research areas for exploring structures, dynamics, and interactions of integrated materials ¹mesoscale = $1\mu m$ to 10mm

(a) Experimental setup (b) Designs of modular cubes with embedded cylindrical magnets in faces

Motion Planner

The self-assembly algorithm takes as input the initial configuration and returns all reachable polyominoes and their shortest construction sequence

The rotation checker checks edge events and collision events and terminates paths that produce collision events

2023 NRI & FRR Principal Investigators' Meeting May 2-3, 2023

Emails: mjkim@lyle.smu.edu, atbecker@central.uh.edu, yitong.lu0729@gmail.com, bhattacharjee.anuruddha@gmail.com.

Award ID#: #2130775 #2130793