

Edge Computing Research Challenges for IoT

Mahadev Satyanarayanan School of Computer Science Carnegie Mellon University

1

© 2018 M. Satyanarayanan

"Cloudlet" = Tier 2 Compute Infrastructure

aka "micro data center", "edge cloud", "fog node"

Small data center at the edge of the Internet

- many sizes & form factors
- one wireless hop (5G / 4G / Wi-Fi / other + fiber / LAN) to tier 3
- multi-tenant, as in cloud
- good isolation and safety (VM-based guests or containerized apps)

Non-constraints (relative to Tier 3)

- energy
- weight/size/heat
- extreme low cost

Won't Mobile Devices Get More Powerful?

Year	Typical Tier-1 Server Processor Speed		Typical Tier-3 Device Device Speed	
1997 2002 2007	Pentium II Itanium Intel Core 2	266 MHz 1 GHz 9.6 GHz (4 cores)	Palm Pilot Blackberry 5810 Apple iPhone	16 MHz 133 MHz 412 MHz
2011	Intel Xeon X5	(4 cores) 32 GHz (2x6 cores)	Samsung Galaxy S2	2.4 GHz (2 cores)
2013	Intel Xeon E5-2697v2	64 GHz (2x12 cores)	Samsung Galaxy S4	(2 cores) 6.4 GHz (4 cores)
		``´´	Google Glass	2.4 GHz (2 cores)
2016	Intel Xeon E5-2698v4	88.0 GHz (2x20 cores)	Samsung Galaxy S7	7.5 GHz (4 cores)
	23-2090 14	(2220 00168)	HoloLens	4.16 GHz
2017	Intel Xeon Gold 6148	96.0 GHz (2x20 cores)	Pixel 2	(4 cores) 9.4 GHz (4 cores)

Source: Adapted from Chen [3] and Flinn [8] "Speed" metric = number of cores times per-core clock speed.

Fig. 2. The Mobility Penalty: Impact of Tier-3 Constraints

Research Challenges at Tier 2

Security and Privacy

Overcoming Limited Elasticity

Dynamic Data Aggregation and Reconfiguration

© 2018 M. Satyanarayanan

Security and Privacy

How do we

- 1. Withstand vulnerability of Tier 2 to physical attacks?
- 2. Balance value of real-time sensor data (e.g., video) with privacy?
- 3. Leverage geospatial proximity for trust?
- 4. Avoid security/privacy delays in latency-critical paths?

Overcoming Limited Elasticity

How do we

- 1. Allocate limited resources at Tier 2 (relative to Tier 1)?
- 2. Handle flash crowds and data-driven spikes in demand?
- 3. Learn user and application behavior, and remember them for the future?
- 4. Recruit help (other cloudlets) rapidly and seamlessly when needed?

Dynamic Data Aggregation and Reconfiguration

How do we

- 1. Perform spatial and temporal aggregation for scalability (megasensor)?
- 2. Do real-time machine learning for optimal video encoding?
- 3. Avoid Tier 2 processing (and hence offered load) whenever possible?
- 4. Switch levels of aggregation rapidly and easily (hence be context sensitive)?