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Abstract

The construction of feedback control laws for underactuated nonlinear robotic systems with
input saturation limits is crucial for dynamic robotic tasks such as walking, running, or flying.
Existing techniques for feedback control design are either restricted to linear systems, rely on
discretizations of the state space, or require solving a non-convex optimization problem that
requires feasible initialization. This paper presents a method for designing feedback controllers
for polynomial systems that maximize the size of the time-limited backwards reachable set
(BRS). In contrast to traditional approaches based on Lyapunov’s criteria for stability, we
rely on the notion of occupation measures to pose this problem as an infinite-dimensional
linear program which can then be approximated in finite dimension via semidefinite programs
(SDP)s. The solution to each SDP yields a polynomial control policy and an outer approximation
of the largest achievable BRS which is well-suited for use in a trajectory library or feedback
motion planning algorithm. We demonstrate the efficacy and scalability of our approach on six
nonlinear systems. Comparisons to an infinite-horizon linear quadratic regulator approach and
an approach relying on Lyapunov’s criteria for stability are also included in order to illustrate
the improved performance of the presented technique.

1 Introduction

Motion planning algorithms have begun to address robotic tasks that require simultaneously man-
aging input saturation, nonlinear dynamics, and underactuation [LaValle, 2006, Karaman and
Frazzoli, 2011, Kobilarov, 2012]. However due to the dynamic nature of such tasks, the open—
loop motion plans constructed by applying such algorithms are inadequate since they are unable
to correct for deviations from a planned path. As a result many techniques for feedback control
synthesis have emerged such as those that rely on Dynamic Programming or the Hamilton—Jacobi
Bellman Equation [Bertsekas, 2005a], [Ding and Tomlin, 2010, Mitchell et al., 2005], Nonlinear
Model Predictive Control |[Jadbabaie et al., 2001], feedback linearization [Sastry, 1999], or lineariz-
ing the dynamics about a nominal operating point in order to make Linear Quadratic Regulator
(LQR) based techniques or Linear Model Predictive Control |Bemporad et al., 2002] applicable.
Unfortunately, the Dynamic Programming and Hamilton—Jacobi Bellman Equation methods suffer
from the curse of dimensionality and can require exorbitant grid resolution [Munos and Moore,



2002, while Nonlinear Model Predictive Control is still too computationally expensive for most
real-world applications. Feedback linearization is untenable for underactuated systems [Spong,
199§| especially in the presence of actuation limits [Pappas et al., 1995] and other techniques that
rely on linearizations generate locally valid controllers without providing any information about
the neighborhood in which the controller is actually valid.

We address these shortcomings in this paper by describing an approach for designing feedback
controllers for polynomial systems which maximize the set of points that reach a given target set at
a specified finite time. We refer to this set as the time-limited backwards reachable set (BRS). Re-
cently, a method relying on the notion of occupation measures was proposed in [Henrion and Korda,
2012| to compute the largest achievable BRS. In this paper, we extend this approach to perform
feedback control synthesis by formulating the design of the controller that generates the largest
BRS as an infinite-dimensional linear program (LP) over the space of nonnegative measures. To
approximate this infinite-dimensional LP, we construct a sequence of finite-dimensional relaxations
in terms of semidefinite programs (SDP)s. We prove that the finite-dimensional approximations
satisfy two important convergence properties: first, each solution to this sequence of SDPs is an
outer approximation to the largest possible BRS with asymptotically vanishing conservatism, and
second, there exists a subsequence of the SDP solutions that weakly converges to an optimizing
solution of the original infinite—dimensional LP.

1.1 Relationship to Lyapunov Techniques

The set of existing approaches to feedback control design that are most comparable to the one
pursued herein are those that use Lyapunov’s criteria for stability for simultaneous synthesis and
maximization of the region of attraction of a particular target set. The criteria are checked for poly-
nomial systems by using sums—of-squares (SOS) programming and result in a bilinear optimization
problem that is solved using some form of alternation [Jarvis-Wloszek et al., 2005 [Majumdar et al.,
2013]. However, such methods are not guaranteed to converge to global optima (or necessarily even
local optima) and require feasible initializations.

By examining the dual to the infinite-dimensional LP that we present, which is posed on
the space of nonnegative continuous functions, one can appreciate the relationship between our
approach and the Lyapunov—based approaches. The dual program, in particular, certifies that a
certain set cannot reach the target set within a pre—specified time for any valid control law. The
complement of this set is an outer approximation of the BRS. This subtle change transforms the
non—convex feedback control synthesis problem written in terms of Lyapunov’s criteria into the
convex synthesis problem which we present. The convexity of the control synthesis approach we
present also resembles the convexity observed in [Prajna et al., 2004] for the design of controllers to
achieve global almost-everywhere asymptotic stability. Though certificates verifying global stability
are of great utility, robotic systems are generally only locally stabilizable. As a result, having
techniques that are able to generate regional certificates rather than global ones is critical.

1.2 Relationship to Occupation Measure Techniques

Our work extends the method described in [Henrion and Korda, 2012 which computes outer ap-
proximations to the largest possible BRS for a given target set. There are three important features
of the approach presented in this paper that distinguish it from this prior work. First, in addition
to computing outer approximations of the BRS, we are able to extract polynomial approximations



to the feedback control law that maximizes the BRS. Next, as described formally in Section the
computational complexity of the algorithm presented here scales better with the number of control
inputs of the system. Finally, as a consequence of this improved scaling, we are able to consider
examples that approach the complexity of real-world robotic systems as we demonstrate in Section
(6]

The occupation measure framework has been used in other contexts such as for the optimal
control of piece-wise affine systems [Abdalmoaty et al., 2012], polynomial systems |Lasserre et al.,
2008|, and switched systems |Claeys et al., 2012} [Henrion et al., 2013]. Of particular interest given
the work presented here, is the approach for the generation of an optimal controller considered in
[Claeys et al., 2012], which introduces the idea of interpreting the control inputs as signed measures
rather than variables over which measures are defined. Though the control law construction we
pursue is distinct from the optimal control law generation proposed in [Claeys et al., 2012], the
idea of interpreting control inputs as signed measures is fundamental to our approach.

1.3 Contributions and Organization

The result of our analysis is an algorithm that could be used to augment existing feedback motion
planning algorithms such as the LQR-Trees approach presented in [Tedrake et al., 2010] which
computes and sequences together BRSs in order to drive a desired set of initial conditions to a
predefined target set, or the method for performing robust online motion planning described in
[Majumdar and Tedrake, 2012]. Our approach could be substituted for the local, linear control
synthesis employed by the aforementioned papers with the benefit of selecting control laws that
maximize the size of the BRS in the presence of input saturations. As a result, the number of
trajectories required in a library in order to fill the space of possible initial conditions could be
significantly reduced. A single nonlinear feedback controller could, in some cases, stabilize an
entire set of initial conditions that previously required a library of locally-linear controllers.

The remainder of the paper is organized as follows: Section [2| introduces the notation used
throughout the paper and briefly introduces infinite-dimensional LPs and SDPs; Section [3| for-
mulates the feedback control synthesis problem as an infinite-dimensional LP and makes clear
the relationship between traditional Lyapunov analysis and our approach; Section [4] constructs a
sequence of finite—dimensional SDPs that approximate the infinite-dimensional LP, describes the
scaling of these finite-dimensional approximations, and formalizes the convergence properties of this
sequence; Section [5] details several straightforward extensions to the presented approach; Section [0]
describes the performance of our approach on six examples, includes comparisons to a traditional
infinite-horizon LQR—-based approach, a method based on checking Lyapunov’s criteria for stability
via SOS programming, the method described in [Henrion and Korda, 2012|, and also describes and
illustrates a technique to take advantage of existing controllers to improve the performance of our
approach; and Section [7] concludes the paper.

2 Background

In this section, we introduce the notation used throughout the remainder of the paper. We also
include a brief introduction to infinite-dimensional LPs and SDPs. We make substantial use of
measure theory in this paper, and the unfamiliar reader may wish to consult [Folland, 1999] for an
introduction.



2.1 Notation

Given an element y € R™ ™, let [y];; denote the (i,7)-th component of y. We use the same
convention for elements belonging to any multidimensional vector space. By N we denote the non-
negative integers, and let N} refer to those o € N* with |a| = Y7 ;[a]; < k. Let R[y] denote the
ring of real polynomials in the variable y.

2.2 Infinite Dimensional Linear Programs

Next we review infinite—dimensional LPs and their associated duality theory. The interested reader
is encouraged to consult |[Anderson and Nash, 1987] for a comprehensive introduction. Let X and
Z be infinite—dimensional real vector spaces, A be a linear map from X to Z, and b be an element
of Z. In addition, let ¢ belong to the dual space of X, denoted X’, whose elements are the linear
functionals on X. A primal linear program expressed in standard form is written as:

sup  (z,c¢) (1)
zeX
s.t.  Ax =0,

x>0,

where the inequality is interpreted element—wise. Note that LPs with constraints of the form
Ax > b can be written in standard form by introducing slack variables. More explicitly, the
constraint Az > b can then be written as Ax — 2z = b, z > 0, with z € Z.

An example of an infinite dimensional space X that is of particular interest to this paper is the
space of measures supported on a compact domain of a Euclidean space. That is, for a compact set
K C R, let M(K) denote the space of signed Radon measures supported on K. The elements of
M(K) can be identified with linear functionals acting on the space of continuous functions C'(K),
that is, as elements of the dual space C(K)’ [Folland, 1999, Corollary 7.18]. Since C(K) ¢ M(K)’
[Folland, 1999, Theorem 5.8], the duality pairing of a measure pp € M(K) on a test function
v € C(K) can be defined as:

o) = [ o@)dnto). (2)

Similarly, the duality pairing of a vector of measures u € (M(K))? on a vector of test functions
v € (C(K))P is defined as:

) = 3 [ [oll)dlil(o) g

As a result, a test function can be treated as a cost function over measures as in Program . In
addition, the linear equality and non-negativity constraints appearing in Program are able to
describe linear equations on nonnegative measures.

Every primal LP has an associated dual LP. To formulate this dual LP, let Z’ be the dual space
of Z. Denote by A’ the adjoint map from Z’ to X’ which is defined by:

(z, A'y) = (Az,y), V(z,y) € X x Z'. (4)
The dual LP to the primal LP in Equation expressed in standard form is:
inf (b, y) (5)
yez’

st. Ay—c>0,



For infinite—dimensional LPs there can be a difference between the primal and dual optimal values,
which is referred to as the duality gap. Note the optimal value of a primal LP lower bounds the
optimal value of its dual program. When there is no duality gap between the pair of programs
strong duality is said to hold.

2.3 Semidefinite Programming

Infinite—dimensional LPs are generally not directly amenable to computation. Approximations to
their solutions can be obtained by solving finite-dimensional semidefinite programs (SDPs). Details
on this approximation are discussed in detail in Section 4l We briefly review some background on
SDPs.

SDP problems are finite-dimensional convex optimization problems whose decision variables
are symmetric matrices. Let S™ denote the space of symmetric n x n real-valued matrices. The
objective function for SDPs is linear. The constraints are linear and semidefiniteness constraints
on the decision variables. Recall that @ € S™ is positive semidefinite, denoted Q > 0, if 27 Qz >
0,Vx € R™. A primal SDP expressed in standard form is written as:

sup (C, X) (6)
Xesn
s.t. <z41,)(>:bZ ViE{l,‘..,m},
X =0,

where C, 4; € S™ and (X,Y) := Tr(XTY). As in the LP case, there is a dual SDP associated to
every primal SDP which when expressed in standard form is written as:

inf b7 7
nf, y (7)
s.t. Z Ay —C = 0.
=1

As in the infinite—dimensional LP case, the optimal value of a primal SDP lower bounds the optimal
value of its dual program. Strong duality does not hold in general, but can be demonstrated if
certain conditions are imposed on the SDPs.

Importantly SDPs can be used to check the non-negativity of polynomials. The decision problem
associated with checking polynomial non-negativity is NP—hard in general |Parrilo, 2000]. However,
the problem of determining whether a polynomial is a sum-of-squares (SOS), which is a sufficient
condition for non—negativity, is amenable to efficient computation. A polynomial p € R[z] is SOS
if it can be written as p(x) = Y., ¢?(w) for a set of polynomials {g;}7; C R[z]. This condition is
equivalent to the existence of a positive semidefinite symmetric matrix @) that satisfies:

p(z) = v(z)" Qu(x), (8)

where v € R[z] is the vector of all monomials with degree less than or equal to half the degree
of p [Parrilo, 2000]. The determination of the positive semidefinite matrix satisfying the linear
constraints in the above equation can be posed as a SDP. To appreciate the connection of SDPs
with the infinite-dimensional LPs over the space of measures, notice that the constraint in the dual
infinite-dimensional LP in requires checking the non—negativity of functions. This connection
is formalized further in Section [4l



3 Problem Formulation

In this section, we formalize our problem of interest, construct an infinite-dimensional linear pro-
gram (LP), and prove that the solution of this LP is equivalent to solving our problem of interest.

3.1 Problem Statement

Consider the control-affine system with feedback control

o) = f (@t x(t) + gt x(t)) ult, ), (9)

with state x(t) € R™ and control action u(t,z) € R™, such that the components of the vector f
and the matrix g are polynomials. Our goal is to find a feedback controller, u, that maximizes the
BRS for a given target set while respecting the input constraint

u(t,z) € U = [a1,b1] X ... X [am, bm], (10)
where {a1,...,am},{b1,...,bm} C R. Define the bounding set, and target set as:

X ={zeR"|hx,(z) >0,Vi={1,...,nx}},

XT:{xGR”|hTi(x)zO,Vi:{l,...,nT}}, (11)

respectively, for given polynomials hy,, hr, € R[z].
Given a finite final time T > 0, let the BRS for a particular control policy v € L'([0,T] x X, U),
be defined as:

x(u) = {wo € R™ |i(t) = [ (t,2()) + g(t, 2(t)) u(t, 2(1))
a.e. t € 1[0,T], z(0) = xo, =(T) € Xr,
2(t) € X Wt € [o,T]}. (12)

X (u) is the set of initial conditions for solutionsﬂ to Equation (9) that remain in the bounding set
and arrive in the target set at the final time when control law w is applied. Our aim is to find a
controller v* € L*([0,T] x X,U), that maximizes the volume of the BRS:

MX(u) > MX(u), Yue L'([0,T] x X,U), (13)

where A is the Lebesgue measure. u* need not be unique. We denote the BRS corresponding to u*
by X*. To solve this problem, we make the following assumptions:

Assumption 1. X and X7 are compact sets.

Remark 1. Without loss of generality, we assume that U = {u € R™ | -1 < u; < 1Vj €
{1,...,m}} (since g can be arbitrarily shifted and scaled). Assumption [1] ensures the existence of
a polynomial hx,(x) = Cx — ||z||5 for a large enough Cx > 0.

1Solutions in this context are understood in the Carathéodory sense, that is, as absolutely continuous functions whose

derivatives satisfy the right hand side of Equation @ almost everywhere [Aubin and Frankowska, 2008, Chapter
10]. Though absolutely continuous solutions exist even when u is just measurable, we focus our
attention on absolutely integrable u since our goal is control synthesis which is accomplished via
the Radon-Nikdoym Theorem [Folland, 1999, Theorem 3.8] in Theorem

6



3.2 Liouville’s Equation

We solve this problem by defining measures over [0, 7] x X whose supports’ model the evolution
of families of trajectories. An initial condition and its relationship with respect to the terminal
set can be understood via Equation @, but the relationship between a family of trajectories and
the terminal set must be understood through a different lens. First, define the linear operator
Ly:CH[0,T] x X) — C([0,T] x X) on a test function v as:

L= 00+ 3 ke, (1)

and its adjoint operator E} : C([0,T] x X)/ — C([0,T] x X)/ by the adjoint relation:

(o) = Lyoy = [ Lpolt)dult,) (15)
[0,T]xX

for all 4 € M([0,T] x X) and v € C'([0,T] x X). Define the linear operator L, : C*([0,T] x X) —

C([0,7] x X)™ as:

[ﬁgv]j = : %[Q]ij(tﬂx% (16)

for each j € {1,...,m} and define its adjoint operator L : (C([0,T] x X)m)/ — CH([0,T] x X)/
according to its adjoint relation as in Equation (15]). Note that £v(t,z) + (Lgv(t, z))u(t, z) is the
time-derivative © of a function v.

Given a test function, v € C' ([0, T] x X), and an initial condition, 2(0) € X, it follows that:

T
o(T,z(T)) = v(0,z(0)) +/0 0 (t, z(t|zo)) dt. (17)

The traditional approach to designing controllers that stabilize the system imposes Lyapunov condi-
tions on the test functions and their derivatives. However, simultaneously searching for a controller
and Lyapunov function results in a nonconvex optimization problem [Rantzer, 2001]. Instead we
examine conditions on the space of measures—the dual to the space of functions—in order to arrive
at a convex formulation.

For a fixed control policy u € L ([0,7] x X,U) and an initial condition zg € R", let z(-|z¢) :
[0,T] — X be a solution to Equation @D Define the occupation measure as:

T
w(A x Blxy) = /0 Taxp (t,z(t|xo))) dt, (18)

for all subsets A x B in the Borel o-algebra of [0,7] x X, where I4.p(-) denotes the indicator
function on a set A x B. As a result of its definition, the occupation measure of a set A x B
quantifies the amount of time the graph of the solution, (¢,z(t|zg)), spends in A x B. In Figure
for example, the set S7 has zero occupation measure though it has non-zero Lebesgue measure.
The set S, in contrast, has non-zero occupation measure.

Equation then becomes:

o(T,z(T)) = v(0,2(0)) +/

(Efv(t,x) n Cgv(t,a:)u(t,x))du(t,aj:po). (19)
[0,T]xX
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(a) For the initial condition zo, the  (b) An illustration (left) of trajectories transforming according to Equation

set S1 has zero occupation mea- @I) and their corresponding occupation measures (right) at times 0, 7,
sure, while the set S2 has non- and T transforming according to Equation ([25)).

Zero occupation measure.

Figure 1

When the initial state is not a single point, but is a distribution modeled by an initial measure,
o € M(X), we define the average occupation measure, u € M ([0,T] x X) by:

p(Ax B) = [ u(Ax Blao)duo(an), (20)

and the final measure, up € M (Xr) by:

yr(B) = /X I3 (2(T|0)) dpao(ixo). (21)

Integrating with respect to po and introducing the initial, average occupation, and final measures,
Equation (19) becomes:

[ o dunta) = [ vt + [
X

(L',fv(t, x) + Lyv(t, x)u(t, ac))du(t, x). (22)

[0,T)xX
XT

It is useful to think of the measures g, ¢ and pr as unnormalized probability distributions. The

support of o models the set of initial conditions, the support of © models the flow of trajectories,

and the support of ur models the set of states at time T'.

Next, we subsume u(t,z) into a signed measure o™ — o~ defined by nonnegative measuresE|
ot o” € (M([0,T] x X))™ such that:

[ wtenutn) = [ oty - [ a0 (23)
AxB AxB AxB

2Note that we can always decompose a signed measure into unsigned measures as a result of the Jordan Decomposition
Theorem [Folland, 1999, Theorem 3.4].



for all subsets A x B in the Borel o-algebra of [0,7] x X and for each j € {1,...,m}. This key
step allows us to pose an infinite-dimensional LP over measures without explicitly parameterizing

a control law while allowing us to “back out” a control law using Equation . Using the notation
from Section Equation becomes:

{ur, v(T, ")) = (1o, v(0,)) + (u, Lyv) + (0" — 07, Lyuv) (24)

for all test functions v € C1([0,7] x X). Notice that this substitution renders Equation linear
in its measure components. To reflect the evaluation of the test function at a specific time, let d;
denote the Dirac measure at a point ¢ and let ® denote the product of measures. Since Equation
must hold for all test functions, we obtain a linear operator equation:

},u+£;a+ — Ly0” =07 ® pr — o @ fio, (25)

called Liouville’s Equation, which is a classical result in statistical physics that describes the evolu-
tion of a density of particles within a fluid [Arnold, 1989]. The occupation measures pg, p and pr,
along with Liouville’s equation allow us to reason about families of trajectories of the dynamical
system. This point of view is illustrated in Figure which depicts the evolution of densities
according to Liouville’s Equation. This equation is satisfied by families of admissible trajectories
starting from the initial distribution pg. The converse statement is true for control affine systems
with a convex admissible control set, as we have assumed. We refer the reader to [Henrion and
Korda, 2012, Appendix A] for an extended discussion of Liouville’s Equation.

3.3 BRS via an Infinite Dimensional LP

The goal of this section is to use Liouville’s Equation to formulate an infinite-dimensional LP, P,
that maximizes the size of the BRS, modeled by spt(ug), for a given target set, modeled by spt(ur),
where spt(u) denotes the support of a measure p. Slack measures (denoted with “hats”) are used
to impose the constraints A > po and p > [oF]; + [07]; for each j € {1,...,m}, as was described
in Section where A is the Lebesgue measure. The former constraint ensures that the optimal
value of P is the Lebesgue measure of the largest achievable BRS (see Theorem . The latter
constraint ensures that we are able to extract a bounded control law by applying Equation (23]
(see Theorem |3)). Define P as:

sup fio(X) (P)

s.t. E}M+E;(U+—U_) = 01 @ pr — 8o @ po,
(07 +[07]; + [6]; = 1 Vie{1,...,m},
po + fio = A,
[07];,[07 15, [6]; > 0 vie{l,...,m},

My oy U ﬂo > 07

where the given data are f, g, X, X7 and the supremum is taken over a tuple of measures (¢7,07, 5,
11, 10, o, pr) € (M([0,T] x X))™ x (M([0,T] x X))™ x (M([0,T] x X)) x M([0,T] x X) x
M(X) x M(X) x M(Xr). Given measures that achieve the supremum, the control law that
maximizes the size of the BRS is then constructed by finding the v € L([0,T] x X,U) whose
components each satisfy Equation for all subsets in the Borel o-algebra of [0, 7] x X. Before



proving that this two-step procedure computes u* € L'([0,T] x X,U) as in Equation , define
the dual program to P denoted D as:

inf /X w(z)d\(z) (D)

s.t. Lrv+ X" [pl; <0,
bl 20, [k > 1L, vie{l,...,mh,
w > 0,
w(z) >v(0,z)+1 Vo e X,
v(T,z) >0 Vo e Xr

where the given data are f,g, X, X7 and the infimum is taken over (v,w,p) € C'([0,T] x X) x
C(X)x(C([0,T] x X))™. The dual allows us to obtain approximations of the BRS X* (see Theorem
@),

Before continuing, we briefly describe the relationship between the dual program D and opti-
mization problems that rely on Lyapunov’s criteria for stability. Notice in particular the relationship
between the function v in D and a Lyapunov function. The constraints £yv+> " [pl; <0, [pl; > 0,
and [p]; > |[L4v];|, as we describe in Theorem [2| are equivalent to the constraint that v decrease
along trajectories of the system for any valid control input. This, in addition to the constraint
requiring v(T, z) > 0 for all x € Xp, implies that the O-sublevel set of v(0,x) for x € X is an inner
approximation to the set of points that cannot reach the target set.

Therefore, in contrast to Lyapunov’s criteria for stability which certifies that a given set of points
reaches the target set, potentially in an asymptotic fashion, v certifies that a given set of points does
not reach the target set. This in turn implies that the 1-super level set of w is an outer approzimation
to the BRS. The benefit of this reformulation of Lyapunov’s criteria is the removal of the control
input v from the set of decision variables for the program D. This removes the non—convexity
that arises by requiring that the time derivative V (¢, z) = % + V.V (t,2)T[f(x) + g(z)u] of
a Lyapunov function V' be non—positive, which is bilinear in the decision variables corresponding
to V and w. Importantly, using our approach, we can still extract a controller by examining the
primal problem P as we describe in the following theorems.

Theorem 1. There is no duality gap between P and D.

Proof. We use an argument similar to the one in [Henrion and Korda, 2012, Theorem 2]. To
simplify the presentation we define:

C = ((C([0,T] x X))™)* x C([0,T] x X) x C(X) x C(X) x C(Xr) (26)

M = (M([0,T] x X))™)* x M([0,T] x X) x M(X) x M(X) x M(X7), (27)

and let K and K’ denote the positive cones of C and M, respectively. The cone K’ is equipped

with the weak*-topology [Folland, 1999, p. 169]. The LP problem (P) whose solution is denoted
p* can be rewritten as:

sup (7,¢)
s.t. Ay =8, (28)
v ek,

10



where the supremum is over the vector v = (0,07, 6, , po, flo, ), the linear operator A’ : K' —
CH[0,T] x X)' x (M([0,T] x X))™ x M(X) is defined by A’y = (=Lfp—LyloT —07) —do @ po +
dr@up, o1+ 1+[6]1,- -, [0 ]m+ [0 Im + [6)m, o + f1o), the right hand side of the equality
constraint in Equation is the vector of measures = (0,0,...,0,\), the vector function in the
~——
m times

objective function is ¢ = (0,...,0,0,1,0,0) € C, so the objective function itself is:
——

m times

(y,¢) = /Xduo = po(X). (29)
The LP problem in Equation can be interpreted as the dual to the following LP problem:

inf (B, z)
s.t. Az —ce K, (30)

where the infimum is over z = (v,p,w) € C([0,T] x X) x (C([0,T] x X))™ x C(X) and the linear
operator A : C1([0,T] x X) x (C([0,T] x X))™ x C(X) — C is defined by:

m

Az = ([Pl = [1£g0hl, - Pl = [[Lgvlml, —Lv = Y _[pliyw = v(0,-),0(T, ), ), (31)
i=1

and satisfies the adjoint relation (A'y, z) = (v,.Az). The LP problem defined in Equation is
exactly dual to (D).

From |Anderson and Nash, 1987, Theorem 3.10] there is no duality gap between the LPs defined
in Equations and if the supremum p* is finite and the set P = {(A'y, (v,¢)) | v € K'} is
closed in the weak*-topology of K’. The finiteness of p* follows from the constraint u + fig = A,
fip > 0, and from the compactness of X. To prove that P is closed, notice that A’ is weak*-
continuous since Az € C for all z € C*([0,T] x X) x (C([0,T] x X))™ x C(X). Next consider a
sequence 7, € K’ such that Ay, — a and (g, c) — b as k — oo for some (a,b) € C1([0,T] x
X)) x (M([0,T] x X))™ x M(X) x R. Since the support of the measures is compact and 7' < oo,
the sequence 7, is bounded. From the weak*-compactness of the unit ball which follows from the
Banach-Alaoglu Theorem [Folland, 1999, Theorem 5.18], there is a subsequence ~i, that weak*-
converges to an element v € K’ so that lim; o (A" vk, , (Y, ¢)) € P. O

Theorem 2. The optimal value of P is equal to A(X™), the Lebesgue measure of the BRS of the
controller defined by Equation .

Proof. Since there is no duality gap between P and D, it is sufficient to show that the optimal
value of D is equal to A(X*). We do this by demonstrating that D is equivalent to the dual LP
defined in Equation (16) in [Henrion and Korda, 2012], whose optimal value is equal to A(X™)
[Henrion and Korda, 2012, Theorem 1, Theorem 2]. Note that the constraints w(z) > v(0,x) + 1,
v(T,z) > 0, and w(x) > 0 appear in both optimization problems. Since the objectives are also
identical, it suffices to show that the first three constraints in D are equivalent to the constraint
Lrv(t,xz) + (Lgv(t,x))u < 0 V(t,z,u) € [0,T] x X x U. Suppose that the former set of the three
constraints holds. Given u € U, note that Ljv + (Lyv)u < Lyv + X, |[Lyv]u;]. Hence, since
pli > |[Lgv]il, Lrv+ X7 [pli <0, and |u;| < 1 (see Remark , we have the desired result.
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To prove the converse, we illustrate the existence of [p|;(t,z) > 0 that satisfies the three con-
straints appearing in D. Let [pl;(t,z) = |L4v(t,x)];|, which is a non-negative continuous function.
Clearly, p; > [L4v]; and [p]; > —[L4v];. To finish the proof, note:

Lyv(t,z) + X% [pli(t, x) = supLyv(t,x) + Lyv(t,z))u <0
uelU

O]

The solution to P can be used in order to construct the control law that maximizes the BRS:

Theorem 3. Let (o, 07*, 6%, u*, ug, i, 1) be the vector of measures that achieves the supremum
of P. There exists a control law, @ € L*([0,T] x X,U), that simultaneously satisfies Equation
when substituting in (o, 07*, 6%, pu*, ug, iy, 1) and mazimizes the size of the BRS, i.e. A\(X(a)) >
AMX (u)),Vu € LY([0,T] x X,U). Moreover, any two control laws constructed by applying Equation

to the vector of measures that achieves the supremum of P are equal u*-almost everywhere.

Proof. Note that [07*];,[c7*];, and p* are o-finite for all j € {1,...,m} since they are Radon
measures defined over a compact set. Define [0*]; = [07*]; — [07*]; for each j € {1,...,m} and
notice that each [0*]; is also o-finite. Since [o1*]; +[0~*]; +[6*]; = p* and [07*];, [07*];,[6%]; > 0,
o* is absolutely continuous with respect to p*. Therefore as a result of the Radon-Nikodym
Theorem [Folland, 1999, Theorem 3.8], there exists a @ € L*([0,T] x X,U), which is unique j*-
almost everywhere, that satisfies Equation when plugging in the vector of measures that
achieves the supremum of P. To see that A\(X (%)) > M\(X(u)),Yu € L'([0,T] x X,U), notice that
by construction ., ug, 1*, and u satisfy Equation for all test functions v € C1([0,T] x X).
Since py describes the maximum BRS and Equation describes all admissible trajectories, we
have our result. O

Next, we prove that the w-component of feasible solutions to D converges from above to the
indicator function on X*. As a result, the sequence of 1-superlevel sets of feasible w-components
can be used as an outer approximation to the true BRS.

Theorem 4. X* is a subset of {x | w(x) > 1}, for any feasible w of the D. Furthermore, there
1 a sequence of feasible solutions to D such that the w-component converges from above to Iy« in
the L' norm and almost uniformly.

Proof. Since D is equivalent to the dual LP defined in Equation (15) in [Henrion and Korda, 2012],
this follows from Lemma 2 and Theorem 3 in [Henrion and Korda, 2012]. O

4 Numerical Implementation

The infinite—dimensional problems P and D are not directly amenable to computation. However, a
sequence of finite-dimensional approximations in terms of SDPs can be obtained by characterizing
measures in P by their moments, and restricting the space of functions in D to polynomials. The
solutions to each of the SDPs in this sequence can be used to construct controllers and outer
approximations that converge to the solution of the infinite-dimensional LP. A comprehensive
introduction to such moment relaxations can be found in [Lasserre, 2010].

Measures on the set [0,7] x X are completely determined by their action (via integration) on
a dense subset of the space C*([0,T] x X) |[Folland, 1999]. Since [0, T] x X is compact, the Stone-
Weierstrass Theorem [Folland, 1999, Theorem 4.45] allows us to choose the set of polynomials as
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this dense subset. Every polynomial on R", say p € R[z] with x = (z1,...,z,), can be expanded
in the monomial basis via
p) =Y paz®,

aeN?

where a = (a1, ..., a;) ranges over vectors of non-negative integers, ® = z{* ... 2%, and vec(p) =
(Pa)aenn is the vector of coefficients of p. By definition, the p, are real and only finitely many are
non-zero. We define Ry [z] to be those polynomials such that p, is non-zero only for a € N'. The
degree of a polynomial, deg(p), is the smallest k such that p € Ry[z].

The moments of a measure p defined over a real n-dimensional space are given by:

Yy = /xo‘d,u(x). (32)

Integration of a polynomial with respect to a measure v can be expressed as a linear functional of
its coefficients:

(1,p) = / p(@)du(@) = 3 pays = vee(n) v, (33)

aeN"

Integrating the square of a polynomial p € Ri[z], we obtain:

[ plaPdute) = vee() M) vec(r), (34)
where My (y,,) is the truncated moment matriz defined by

(Mo () (0, = Yy 7 (35)

for o, f € N}. Note that for any positive measure p, the matrix My (y,) must be positive semidefi-
nite. Similarly, given h € R[z] with (h)yenn = vec(h) one has

[ pla () duta) = vee(p)" My, vec(r), (36)
where My (h,y) is a localizing matriz defined by
[Mi(h, Yy = D, hay ™’ (37)
yeNn

for all a, B € N}!. The localizing and moment matrices are symmetric and linear in the moments y.

4.1 Approximating Problems

Finite dimensional SDPs approximating P can be obtained by replacing constraints on measures
with constraints on moments. All of the equality constraints of P can be expressed as an infinite—
dimensional linear system of equations which the moments of the measures appearing in P must
satisfy. This linear system is obtained by restricting to polynomial test functions (which we note
are sufficient given our discussion above): v(t,z) = t*?, [p];(t,z) = t*2®, and w(z) = 2P, Va €
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N, 8 € N™. For example, the equality constraint corresponding to Liouville’s Equation is obtained
by examining:

0= / Ly(t*2?)du(t, z) + / L,(t%2%)d[ot;(t, z)

[0,7]x [0,T]xX
/ﬁ (t*2”)dlo ] (¢, )—/Tal’ﬁd/JT(x) -l-/wﬁduo(a;).
0,T]x X Xr X

A finite—dimensional linear system is obtained by truncating the degree of the polynomial test
functions to 2k. Let I' = {o",07,6, i, po, fto, o}, then let yr = (yx~) C R be a vector of
sequences of moments truncated to degree 2k for each v € T. This is analogous to truncating
the degree of a polynomial while performing SOS—programming to find a Lyapunov function. The
finite—dimensional linear system is then represented by the linear system:

Ar(yr) = br. (38)

Constraints on the support of the measures also need to be imposed (see [Lasserre, 2010] for details).
Let the k-th relaxed SDP representation of P, denoted P, be defined as:

sup YR o (Py)

s.t. Ak (yk) = b,
My (yry) =0 VyerT,
My, (hx,;s Yry) = 0 V(i,v) € {1,...,nx} x M\ur,
Mg, (01, Yhpuy) = 0 Vie{l,...,nr},
My—1(hr,Yrn) = 0 vy € I'\{po, prs fio},

where the given data are f, g, X, X7 and the supremum is taken over the sequence of moments,
Vi = (Ykny), he = t(T —t), kx, = k — [deg(hx,)/2], kr, = k — [deg(h1,)/2], and = 0 denotes
positive semi-definiteness. For each k € N, let y; denote the optimizer of P, with components yzﬁ
where v € I" and let p; denote the supremum of Fj.

The dual of Py is a sums-of-squares (SOS) program denoted Dy for each k£ € N, which is
obtained by first restricting the optimization space in the D to the polynomial functions with degree
truncated to 2k and by then replacing the non-negativity constraint D with an SOS constraint
[Parrilo, 2000]. Define Qax(hx,, ..., thX) C Roi[z] to be the set of polynomials ¢ € Rog[z] (i.e. of
total degree less than 2k) expressible as

nx

q=5s0+ Z sihx;, (39)
i=1

for some polynomials {s;};*, C Rog[z] that are sums of squares of other polynomials. Every
such polynomial is clearly non-negative on X. Define Qox(hr,hx,, .. .,thX) C Rog[t,z] and
Qar(hry,y ..., thT) C Rok[z], similarly. Employing this notation, the k-th relaxed SDP representa-
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tion of D, denoted Dy, is defined as:
inf Tvec(w) (D)
s.t. — Lo —1"p € Qo(hr,hx,, ..., hx, ),

p— (Lg0)" € (Qar(hr hxy,. . hx, )™

P+ (Lgv)" € (Qar(hr hxy, .. hx, )™,

w € Qa(hxys - - hx,, ),

w—0(0,-) =1 € Qap(hxy, -, hx,,. ),

o(T,) € Qax(hry, .. hr, ),

where the given data are f, g, X, X, the infimum is taken over the vector of polynomials (v, w,p) €
Rog[t, 2] x Rog[x] x (Rog[t, x])™, and [ is a vector of moments associated with the Lebesgue measure
(ie. [y w dx=1Tvec(w) for all w € Ry[z]). For each k € N, let df denote the infimum of Dy,

Theorem 5. For each k € N, there is no duality gap between Py and Dy.

Proof. This is a standard result from the theory of SDP duality so we do not include all of the
proof details here. The proof involves noting that the moment vectors in SDP, Py, are necessarily
bounded because of the constraint g + figp = A, and then arguing that the feasible set of the SDP,
Dy, has an interior point. The existence of an interior point is sufficient to establish zero duality
gap |Trnovskd, 2005, Theorem 5]. O

Next, we present a technique to extract a polynomial control law wug(t, ) from the solution yy
of P,. Given moment sequences truncated to degree 2k, one can choose an approximate control law
uy, with components [ug]; € Rg[t,z] so that the truncated analogue of Equation is satisfied.
That is, by requiring;:

[ et n) duttn) = [ eatdiot - o7 t,a), (40)
[0,T]xX [0,T]xX
for (ap, @) satisfying > 7", a; < k. When constructing a polynomial control law from the solution

of Py, these linear equations written with respect to the coefficients of [uy]; are expressible in terms
of yp +,y; .-, and yj, e Direct calculation shows the linear system of equations is:

Mk(yZ,M)VeC([Uk]j) = yz,[gﬂj - yz,[g—]f (41)

To extract the coefficients of the control law, one needs only to compute the generalized inverse of
My (yj, ,,) which exists since My (yj, ,) is positive semidefinite. Note that the degree of the extracted
polynomial control law is dependent on the relaxation order k. Higher relaxation orders lead to
higher degree controllers.

4.2 Computational Complexity

Our approach scales in a manner similar to Lasserre’s hierarchy of SDP based relaxations for poly-
nomial optimization [Lasserre, 2010]. In particular, since the measures appearing in the infinite—
dimensional LP P are all supported on subsets of [0, 7] x X with total dimension n+ 1, the number
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of moments associated with a given measure grows as O((n+ 1)) for a fixed relaxation order k and
scales as O(k™*1) for fixed state space dimension n. The total number of measures in the program
P scales linearly with the number of control inputs m.

We note that this is in contrast to the approach presented in [Henrion and Korda, 2012| for
computing outer approximations of the BRS, wherein the occupation measures are supported on
variables corresponding to time, state and the control input (dimension 1 + n + m). The number
of moments in that formulation scales as O((1 +n 4 m)¥) for a given k and O(k'*"+™) for fixed n
and m. The reason for this difference in complexity stems from the fact that in our approach the
control input is not treated as a separate variable u over which measures (and thus test functions)
are defined. Instead, we introduce a signed measure o+ — o~ in equation corresponding to
the control input which depends only on ¢ and x. As a result of this reduction in computational
complexity, we are able to handle larger state and input spaces, as we illustrate in Section [6]

4.3 Convergence of Approximating Problems

Next, we prove the convergence properties of P, and D and the corresponding controllers. We
begin by proving that the polynomial w approximates the indicator function of the set X*. As
we increase k, this approximation gets tighter. The following theorem, whose proof is a modified
version of the proof of Theorem 5 in [Henrion and Korda, 2012], makes this statement precise.

Theorem 6. For each k € N, let wy € Rox[z] denote the w-component of the solution to Dy,
and let wy(x) = minj<gw;(z). Then, wy, converges from above to Iy in the L' norm, and wy(x)
converges from above to Iy« in the L' norm and almost uniformly.

Proof. From Theorem {4 for every ¢ > 0, there exists a feasible tuple of functions (v,w,p) €
CH([0,T] x X)xC(X)x(C([0,T] x X))™ such that w > Iy« and [y (w—1Ix-)d\ < e. Let (¢, x) :=
v(t,z)—3eT+3(T+1)e, w(z) := w(x)+3(T+3)e and [pl; (¢, x) = [pli(t, z)+(2€)/m,Vi={1,...,m}.
Then, L0 = Liv—3¢, 9(t,x) = v(T, x)+3¢, W(x)—0(0,x) = 14+6¢, and L0 = Lyv. Since the sets X
and [0,T] x X are compact, and by a generalization of the Stone-Weierstrass theorem that allows for
the simultaneous uniform approximation of a function and its derivatives by a polynomial [Hirsch,
1976, pp. 65-66], we are guaranteed the existence of polynomials o, w, [p]; such that ||0 — 7]/ < €,
L0 — Li0|loo < € [[Lg0 — LyO]|oc < €/m, || — D] < € and [|[p]i — Plillc < €/m. Tt is
easily verified that these polynomials strictly satisfy the constraints of Djy. Hence, by Putinar’s
Positivstellensatz |[Lasserre, 2010] and Remark |1} we are guaranteed that these polynomials are
feasible for Dy for high enough degree of multiplier polynomials. We further note that w > w.
Then, [y @ — w]d\ < eA(X), and thus [y (& — w)dA < eX(X)(3T + 10). Hence, since w > Ly~
and [y (w — Ix+)dX\ < € by assumption, it follows that [y (i — Ix+)d\ < e(14 A(X)(3T 4 10)) and
w > Iyx~. This concludes the first part of the proof since € was arbitrarily chosen.

The convergence of wy to Iy+ in L' norm implies the existence of a subsequence wy, that
converges almost uniformly to Iy« [Ash, 1972, Theorems 2.5.2, 2.5.3]. Since wi(z) < min{wy, :
k; < k}, this is sufficient to establish the second claim. O

Corollary 1. {d;}?°, and {p;}?2, converge monotonically from above to the optimal value of D
and P.

Proof. This is a direct consequence of Theorems [1] and [6} O
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Next, we prove that the 1-superlevel set of the polynomial w converges in Lebesgue measure
to the largest achievable BRS X*. The proof of the statement is similar to Theorem 6 in [Henrion
and Korda, 2012].

Theorem 7. For each k € N, let wy, € Ro[x] denote the w-component of the solution to Dy, and
let Xy :={x € R"™ : wi(x) > 1}. Then, limy_,oco A(XK\X*) = 0.

Proof. Using Theorem {4 we see wy, > Ix, > Ix+. From Theorem @ we have wy, — Iy« in L' norm
on X. Hence:
AMX*) = lim | wgdX > lim [ Iy, d\= lim A(X).
k—oo Jx k—oo Jx k—o0
But since X* C X}, for all k, we must have limy_, oo A(X;) = A(X*) and thus limg_,oo M A \X™*) =
0. O

Finally, we prove a convergence result for the sequence of controllers generated by .

Theorem 8. Let {y;  }ter be an optimizer of Py and let {7132, be any sequence of measures
such that the truncated moments of ~; match y,’;ﬂ/ for each v € I'. In addition, for each k € N,
let uy, denote the controller constructed by Equation using {yzﬁ}yep. Then, there exists an
optimizing vector of measures (o, 07*, 6%, u*, us, iy, uk) for P, a u* € LY([0,T] x X) generated
using o*, 07 *, and p* according to Equation , and a subsequence {k;}?2; C N such that:

1—00

v(t, @)[ug, ] (¢, ©)dpy, (¢, ) v(t, @)[u’];(t, 2)dp*(t, x), (42)

[0,T]xX [0,T]xX
for all v € C([0,T] x X), and each j € {1,...,m}.

Proof. As aresult of Theorem 4.3 in |Lasserre, 2010, if we complete each y,’;‘ﬁ with zeros to make it
an infinite vector, then there exists a y, € [ and a subsequence {k;}ien such that for each v € T,
lim; 00 Yy, , = Y3- Moreover, as a result of Theorem 3.8(b) in [Lasserre, 2010] for each v € T' y3
has a finite Borel representing measure, and this set of represented measures, which we denote by
(o, 07*, 6%, u*, ug, 4, 1), is an optimizing vector of measures for P as a result of the proof of
Theorem 4.3 in |[Lasserre, 2010].

Next, note that the set of test functions v can be restricted to polynomials since the set of

polynomials is dense in C'([0,7] x X). Using Equations (23)), (40)), and (41)):

[ o(tidsani, — whan) = [ o(diof); - dio ) - dio*]; + o))
[0,T]x X [0,T]x X

= vec(v) (yzza;r — y;j + y;; — y,:mj,).

where we have suppressed the dependence on (¢, x) for convenience. The desired result follows from
the previous equality since for each y € I', lim; o0 Yy, y = (7 O
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4.4 Implementation Details

The process of constructing SDPs Py, and Dy, can be automated given the following problem data:
polynomials f and g describing the dynamical system, a time-horizon 7' > 0, polynomials hx, and
ht, describing the bounding set X and target set X7, and a relaxation order k. This can be done
in two different ways using freely available software. The first approach is to specify the primal
problem over measures using the software toolbox GloptiPoly [Henrion et al., 2009]. GloptiPoly is
a software package that features a user friendly interface for specifying and approximately solving
the Generalized Problem of Moments (GPM) using SDP. The infinite dimensional LP P is an
example of the GPM and can thus be specified using GloptiPoly, which can construct the SDPs
P, automatically from a high-level description of P. The second option is to directly specify
the SOS programs Dy using a software package such as YALMIP [Lofberg, 2004]. This is the
approach we took to construct the SDPs arising from the examples considered in Section [6] with an
implementation that made use of a custom software package and the YALMIP toolbox. In both
cases, the constructed SDP can be solved using a SDP solver such as SeDuMi [Sturm, 1999] or the
commercially available MOSEK solver.

Note that both GloptiPoly and YALMIP allow one to extract dual variables from the specified
programs (assuming a primal-dual solver such as SeDuMi or MOSEK has been used to solve the
SDP). If one is using GloptiPoly, this allows one to extract the polynomials v and w describing outer
approximations of the BRS. If on the other hand YALMIP is used to specify the SOS program Dy,
one can extract the moment matrices in P, required to construct the control law using Equation

from the solution.

5 Extensions

In this section, we describe two extensions to the approach presented in this paper.

5.1 Free Final Time

First, we examine the case where the task is to drive initial conditions to the target set within
a pre-specified time T' < oo rather than exactly at time 7. Solutions are not required to remain
within the target set once they reach it. This provides the controller with a degree of flexibility
and a task specification that maybe more appropriate for rendezvous—type applications. We refer
to this task as the Free Final Time problem.

The primal LP to address this problem is obtained from the LP P presented in Section |3| by
modifying the support of the final measure pup to be [0,7] x Xp. Each of the constraints are
identical to the ones in P, but now ur € /\/l( [0, 7] x XT). Consequently, the only modification to
the original dual program D is that the non—negativity constraint on the function v is imposed for
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all time ¢ € [0, 7] instead of just at time T

inf /X w(z)d\(x) (43)

s.t. Lyv+ % [pli <0,
Pl 20, [pli = [[£g0]i| Vi=A{L,....m},
w >0,
w(z) >v(0,2) +1 Vo € X,
u(t,z) >0 V(t,x) € [0,T] x Xr

Each of the aforementioned corollaries and theorems extend to this problem with nearly identical
proof and the numerical implementation follows in a straightforward manner.

5.2 Trigonometric variables

Our method can be readily adapted to handle dynamics with trigonometric dependence on states,
x;, so long as the dynamics are polynomial in sin(x;) and cos(z;). This is accomplished by introduc-
ing indeterminates ¢; and s; identified with sin(z;) and cos(z;) and modifying the SOS constraints
to work over the quotient ring of polynomials associated with the ideal generated by the unit-
circle constraints: 312 + c? = 1. Details of the construction and implementation involved with this
approach are discussed in [Parrilo, 2003 Section 4]. Note that in general, this ability to handle
trigonometric variables comes at a cost. In particular, one needs to replace a variable x; with two
variables, thus increasing the number of states of the system.

6 Examples

This section provides a series of numerical experiments on example systems of varying complexity.
Each SDP was prepared using a custom software toolbox and the modeling tool YALMIP [Lofberg,
2004]. The programs are run with the freely available SeDuMi 1.3 [Sturm, 1999] and the commercial
solver MOSEK on a machine with 8 Intel Xeon processors with a clock speed of 3.1 GHz and 32
GB RAM. During simulation, applied control inputs were taken taken to be the saturation of the
synthesized feedback control law.

6.1 Double Integrator

The double integrator is a two state, single input system given by:

j:l = T2,
44
by — (44)

with u restricted to the interval U = [—1,1]. Setting the target set to the origin, X7 = {0}, and
T =1 the optimal BRS AX* can be computed analytically based on a minimum time “bang-bang
controller” [Bertsekas, 2005b, pp. 136]. Note that this is a challenging system for grid based optimal

control methods, since they require high resolution near the switching surface of the “bang-bang”
control law.
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Figure 2: An illustration of the convergence of outer approximations and the performance of con-
trollers designed using our approach for increasing truncation degree, k, for the double integrator.
Solid thick lines indicate the outer approximations, defined by wy = 1. The boundary of the true
BRS (which is analytically computable for this example) is depicted as the solid thinner line. Points
indicate terminal states (z(7")) of controlled solutions with initial states x(0) inside the true BRS
using our generated feedback control laws uy.

We take the bounding set to be X = {z | ||z||* < 1.6%}. Figure [2| compares the outer approx-
imations of X* for k = 2,3,4. The quality of the approximations increases quickly. Figure [2| also
evaluates the performance of the control laws uy by plotting the terminal states x(7T') for controlled
solutions starting in X*. Even for k = 3, reasonable performance is achieved. The running times
for k = 2,3,4 are 0.3, 0.7, and 4.2 seconds, respectively with the SeDuMi solver and 0.22, 0.28, and
0.51 seconds respectively with MOSEK.

As a concrete example of the output of our approach, we note that the time-varying feedback
control law produced for k£ = 2 is:

UQ(t, l’) = —1.541x1 — 4.046x1t — 1.09929 — 3.677x4t.

6.2 Ground Vehicle Model

The Dubin’s car [Dubins, 1957] is a popular model for autonomous ground and air vehicles and has
been employed in a wide variety of applications [Bhatia et al., 2008, Chen and Ozguner, 2007, |Gray
et al., 2012]. Its dynamics are:
a = vcos(0),
b= vsin(f), (45)
0=uw,
where the states are the x-position (a), y-position (b) and yaw angle () of the vehicle and the

control inputs are the forward speed (v) and turning rate (w). A change of coordinates can be
applied to this system in order to make the dynamics polynomial [DeVon and Bretl, 2007]. That
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is by considering the coordinate transform:

z1 = 0
z9 = acos(f) + bsin(d) (46)
z3 = asin(f) — bcos(0),

with the input transformation:
Uy = w

(47)
U2 = vV — 23Uy,
the kinematics in Equation can be expressed in power form as:
2:’1 = Ul
22 = Uz (48)
23 = Z22U1.
By defining new state variables as:
1 = 21
o = 29 (49)
xr3 = —22’3 + 2129,
the system takes the form:
"tl = us,
.i‘g = U2, (50)

i‘g = T1U2 — T2U1.

This system is also known as the Brockett integrator and is a popular benchmark since it is proto-
typical of many nonholonomic systems. Notice that the system has an uncontrollable linearization
and does not admit a smooth time-invariant control law that makes the origin asymptotically stable
[DeVon and Bretl, 2007]. Hence, this example illustrates the advantage of our method when com-
pared to linear control synthesis techniques. We solve the “free final time” problem to construct
a time-varying control law that drives the initial conditions in X = {z | ||z||? < 4} to the target
set X7 = {z | ||z||*> £ 0.12} by time T = 4. In the Dubin’s car coordinates, the target set is a
neighborhood of the origin while being oriented along the positive a-axis. The control is restricted
to uy,ug € [—1,1]. Figure 3| plots outer approximations of the BRS for k& = 5.

Figure [] illustrates two sample trajectories generated using a feedback controller designed by
our algorithm after transforming back to the original coordinate system. Note the nontrivial nature
of the trajectories resulting from applying our nonlinear time-varying feedback law. The trajectory
starting in the upper right hand corner executes a three-point turn to arrive at the desired position
and orientation. Solving the SDP took 599 seconds with SeDuMi and 48 seconds with MOSEK.

6.3 Torque Limited Simple Pendulum

Next, we consider a two-state torque limited simple pendulum, described by the equation

16 = mglsin(0) — b0 + u, (51)
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(a) k=5, (x1,z3) plane (b) k=25, (z1,x2) plane

Figure 3: The boundary of X (solid line) and the outer approximation of the BRS (dOtted line) are shown in
the (z1,x3) and (z1,z2) planes. In each plane, dark points indicate initial conditions of controlled
solutions with z(T) € X7 (i.e. |Jz(T)|* < 0.12), and light points indicate initial conditions of
solutions ending near the target set (specifically ||z(T)[|? < 0.22).

0.19

—0.5_)87 a 0.47

Figure 4: A pair of sample trajectories drawn as a line beginning with a circle and ending as a cross generated
by our algorithm for the Dubin’s car system. Each drawn time sample of the car includes an arrow indicating the
forward—facing direction. The origin is marked by a filled in dot. The target set is a neighborhood of the origin
with orientation pointing along the positive a-axis. The trajectory starting in the upper right hand corner executes
a three-point turn to arrive at the desired position and orientation.
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‘- Dtl;((t)DXT

6.4 X

-
Sample Solutions

Figure 5: A depiction of the controller performance for k = 5 for the torque limited simple pendulum. Black regions
indicate sampled initial conditions whose controlled solutions pass through the target set (dotted
square). Three sample solutions are also plotted and each have terminal conditions in the target
set. Note the solution starting near (—2,3.2) passes through zero velocity — the solution “pumps”
to reach the upright position. While at first glance it may seem like the trajectories should remain
within the black region at all times, this is not in fact the case due to the time-varying nature of
the control law. Some points along the trajectories do not belong to the black region because the
controller would succeed from those points only if it was applied using a starting time different
from zero.

where 60 represents the angle from upright and u represents a torque source at the pivot constrained
to take values in U = [—3,3]. We take m = 1,1 = 0.5, I = ml? b= 0.1 and g = 9.8. The bounding
set is defined by 6 € [—m,7) and 6 € [—8,8]. We use the method described in Section |5.2|in order
to directly handle the trigonometric dynamics of the system.

For this example, we solve the Free Final Time problem by taking 7" = 1.5, and defining the
target set as X7 = {(6,6) | cos(d) > 0.95,6% < 0.05}. The running time for the SDP is 680 seconds
with SeDuMi and 156 secs with MOSEK for £ = 5. Figure 5| plots sample solutions and summarizes
the initial conditions that reach the target set. Notice that the controller is able to “swing-up”
states close to the downright position to the upright configuration despite the stringent actuator
limits and a short time-horizon. In particular, the trajectory starting close to (—2,3.2) in Figure
“pumps” energy into the system by first moving in one direction and then switching direction to
swing up and reach the upright position.
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6.4 Satellite Attitude Control

We now examine a six state system with three inputs describing attitude control of a satellite with
thrusters applying torques. The dynamics are defined by

Ho=—-Q(w)Hw + u,

. 52
§= ST +90) + 997, )
where w € R3 are the angular velocities in the body-frame, ¢ € R3 represent the attitude as
modified Rodriguez parameters (see [Prajna et al., 2004]), Q : R3 — R3*3 is the matrix defined
so that Q(¢)w = is the cross product ¥ x w, and H € R3*3 is the inertia matrix. We let H be
diagonal with [H]1; = 2, [H]so =1 and [H]s3 = 3.

We take the input constraint set as U = [—1,1]3 and the origin as a target set. We apply the
proposed control design methods with k = 3. Solving the SDP took approximately 6 hours with
SeDuMi and 1 hour with MOSEK. Figure [6] examines the controller performance. A set of initial
conditions are sampled from a hyperplane, and those whose solutions arrive near the target set are
highlighted. We note that a SDP with k = 2 takes only 62.3 seconds, but yields a controller and
BRS approximations that are slightly inferior, though potentially still useful in practice.

As mentioned in Section one advantage of our approach over the method presented in
[Henrion and Korda, 2012] for computing outer approximations of the BRS (besides the ability to
extract a control law) is the computational scaling of the proposed algorithm with respect to the
number of control inputs. On the satellite system, our implementation of the algorithm presented
in [Henrion and Korda, 2012] is unable to run due to memory (RAM) constraints for a relaxation
order of kK =2 or k = 3. For k = 1, using MOSEK the running time is 909.1 seconds. In contrast,
our method using MOSEK takes 3.2 seconds to run.

6.5 Cart—Pole

Next, we consider the four state, single input cart—pole system illustrated in Figure[7} Its dynamics
are defined by ) '
(me 4 myp)@ — myl cos(0) = —m,yl6? sin(6) + u,

10 — i cos(0) = gsin(h),

where x is the position of the cart, 6 is the angle of the pole, and u is the control input and
corresponds to the force applied to the cart. The mass of the cart, m., is set equal to 10, the length
of the pole, [, is set equal to 0.5, and the point mass at the end of the pole m,, is set equal to 1.
The control input is restricted to the interval [—35, 35].

We solve the Free Final Time problem with 7" = 20 and set the target set equal to the origin. The
dynamics are expanded using the Taylor Series about the origin to degree three in order to obtain
polynomial dynamics since the dynamics are rational rather than polynomial in the trigonometric
variables. However when we simulate the system to verify the performance of our algorithm, we
use the original dynamics rather than the Taylor Series expanded dynamics. The SDP takes 15.8
seconds to run using MOSEK when k = 3.

(53)
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d2
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Figure 6: Demonstration of the controller performance for k = 3 for the satellite system. Points are sampled from
the bounding set (dashed black) and the set where w(z) < 1 (boundary is solid line). To excite coupled
dynamics between the angular velocities, initial conditions are chosen from the hyperplane with
coordinates (81, d2) given by 61 = (11 + 12)/v/2 and da = (g + W2)/+v/2. Black (resp. grey) points
indicate initial conditions whose controller solution satisfies ||z(7)| < 0.1 (resp. ||z(T)| < 0.2).
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Figure 7: An illustration of the cart—pole system showing the configuration variables and the control input.
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6.5.1 Comparison to LQR

We compare the performance of our controller to an infinite—horizon LQR. controller designed by
linearizing the dynamics about the origin [Kwakernaak and Sivan, 1972|. The state and input cost
matrices are chosen to be a diagonal matrix Q@ € R*** with [Q]11 = 200, [Q]22 = 30, [Q]33 = 100,
and [Q]s4 = 30, and a scalar R = 0.5, respectively. These cost matrices for the LQR controller
were chosen by careful hand-tuning in order to obtain good performance.

Figure[§illustrates the performance of the two controllers by simulating both closed loop systems
forward for T" = 20 from initial conditions densely sampled from two-dimensional slices of the state-
space, i.e. simulating with initial conditions that have all but two of the states set to 0. Points
that get close to the target (all coordinates less than 0.5 in absolute value) are plotted as circles for
our controller and filled in dots for the LQR controller. In most of the slices, our controller is able
to drive more initial conditions to the desired target set in comparison to the LQR controller. We
also note that when the LQR cost matrices are designed without careful hand tuning the difference
between the performance of our controller and the LQR controller is even more dramatic.

6.5.2 Improving Performance Using LQR

Though our controller does demonstrate better performance than the LQR controller on most of
the slices, it is clear that in the -6 slice our controller performs worse than the LQR one. We
briefly describe how to take advantage of an existing well-tuned LQR controller (or any existing
feedback controller in general) in order to further improve the performance of our approach. In
particular, consider applying our method for designing a controller u to the following system:

&= f(z) +g(z)[u+ Kz, (54)

where Kx is the feedback term from the LQR controller.

This modification of the system dynamics in the infinite—dimensional LP P could potentially
allow our approach to take advantage of the local performance of the LQR controller. However, if
the bound on the control input, u;, of the original system are [—1, 1], then the quantity [u + Kx];
must be bounded between [—1,1]. This requires replacing the constraint x> [oF]; 4+ [07]; in the
infinite—dimensional LP P with the following two constraints:

/ s > / s;ldo]; — / 5;ldo™]; + / s[Kalydn Vie{l,..m},  (55)

[0,T]x X [0,T]x X [0,T)xX [0,T)1x X
/ ridp > — / rildot]; + / rildo~]; — / rilKxljdp V5 e{l,...,m}, (56)
[0,T]x X [0,T)1xX [0,T]xX [0,T]xX

for all sj,r; € C1([0,T] x X). These constraints can also be written as:

p> ot —[o7]; + [Kalju Vie{l,...,m}, (57)

p>—lot)+[o7]; — [Kalju Vie{l,...,m} (58)
The dual program corresponding to this modified program is derived in a manner similar to the
dual program presented earlier, so we do not present it here.

Figure[9| compares the result of applying the controller obtained from this method to the original
LQR controller on the aforementioned cart—pole system task. As before, we sample initial conditions
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from slices of the state space and indicate which samples successfully get close to the target. The
plots indicate that we are able to strictly improve the performance of the LQR controller using this
approach except at two points, with significant improvements on certain slices.

6.5.3 Comparison to Lyapunov Based Approach

Next, we compare the performance of our controller generated on the unmodified dynamics (i.e.,
without the LQR feedback term) with a controller generated via Lyapunov’s criteria for stability
using SOS programming. We use the approach presented in [Majumdar et al., 2013, Section II]
to design a controller that has cubic dependence on the state variables. This method employs
an iterative algorithm and requires an initial guess for the controller, for which we use the LQR
controller described in Section [6.5.1] As a side-note, we tried to design a linear controller using the
Lyapunov function based approach but saw no improvement in the performance of the generated
controller when compared to the LQR controller with which we initialized the algorithm.

Figure [10] compares the performance of the two controllers. As in the earlier figures, we sample
initial conditions from slices of the state space and indicate which points reach close to the target
set. The approach presented in this paper demonstrates superior performance on the 8 — z and
i—0 slices, while the performance of the controller from [Majumdar et al., 2013| is better on the
& —z and 0 — @ slices and only slightly more favorable on initial conditions drawn from the z — 6
and z — 6 slices.

It is important to note that the method presented in this paper has several important advantages
when compared to the approach presented in [Majumdar et al., 2013|. As mentioned in Section
the optimization problem that results from the formulation in [Majumdar et al., 2013] (and
from other similar formulations based on Lyapunov conditions, see e.g. [Jarvis-Wloszek et al.,
2005, [Jarvis-Wloszek et al., 2003]) is non-convex and is solved by iteratively optimizing sets of
decision variables. These iterations require a feasible initialization and involve solving three SOS
programs at each iteration. In particular, the iterations for the example considered in this section
were initialized with the LQR controller from Section and required 24 iterations to converge
(72 SOS programs in total). Further, the iterations are not guaranteed to converge to a global
minimum (or necessarily even to a local minima) and can give different results based on the choice
of initialization. The method presented in this paper in comparison does not require a feasible
initialization and involves solving a single convex SOS program (albeit potentially a slightly more
expensive one) and thus does not suffer from local minima. Moreover, our approach is amenable
to theoretical analysis in the form of the convergence results presented in Section [3) which are
currently unavailable for the method described in [Majumdar et al., 2013].

Finally, our method also scales well with the number of control inputs (m). In particular, the
number of SOS constraints in the dual programs Dy, grows linearly with m (for fixed k). In contrast,
the number of SOS constraints for input constrained systems scales as O(3™) for the approach in
[Majumdar et al., 2013]. This can lead to expensive optimization problems even for moderately
sized input spaces.

6.6 uBot Mobile Manipulator

In our final example, we demonstrate the scalability of our algorithm by considering the eight state,
three input system depicted in Figure [L1(a)l The model for the system, which we do not include
here due to its complexity, is based on the uBot robot |[Deegan et al., 2006]. We consider only the
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(a) An illustration of the uBot-5 hardware plat-  (b) An illustration of the planarized uBot
form, developed at the University of Mas- model showing the configuration vari-
sachusetts, Amherst. Reproduced with per- ables.
mission from [Konidaris et al., 2011].

Figure 11: Depictions of the uBot system considered in Section

dynamics in the sagittal plane by coupling the motion of the arms. An illustration of the planarized
model and its associated configuration variables are shown in Figure The state vector for
the model includes the configuration variables and their derivatives.

The rotational inertia of the wheel is assumed to be negligible, and the system is modeled as
a mobile cart with three links corresponding to the torso and two link arm. The masses of the
cart, torso, and upper and lower arms are set to 0.6 kg, 12 kg, 2 kg, and 0.6 kg, respectively. The
lengths of the torso link, upper arm link, and lower arm link are set to 0.5 m, 0.27 m and 0.27
m, respectively. The control inputs for the system are the force on the cart in the x-direction,
denoted by F,, and torques at the shoulder and elbow joints, denoted by 7o and 73, respectively.
The 6; joint is not directly actuated. We impose the following input constraints on the system:
F,e[-1,1]Nand 7 € [-1,1] N - m for ¢ = 2 and 3.

We again solve the Free Final Time version of the control problem by setting 7' = 7 seconds
and letting the target set to be the origin. The dynamics of the system are expanded using Taylor
Series about the origin to degree three in order to obtain polynomial dynamics. We solve the SDP
associated with & = 2, which takes 27 minutes with MOSEK. We were unable to run the SDP
with SeDuMi for this example. Note that grid—based approaches such as those relying on Dynamic
Programming or the Hamilton—Jacobi Bellman Equation are not able to address a problem of this
dimensionality, which demonstrates the utility of our approach.

We apply the approach described in Section to augment our dynamics with the LQR
controller. The state and input cost matrices are taken to be the diagonal matrix Q € R®*® with
Q11 = 15, [Qla2 = 10, [Q33 = 10, [Qsaa = 10, [Q]s5 = 1, [Qles = 1, [Q]77 = 1, and [Q]ss = 1 and
diagonal matrix R € R3*3 with [R]11 = 2, [R]22 = 2, and [R]33 = 1, respectively.
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As before, we improve the performance of the LQR controller significantly. Figures
and show initial conditions sampled from two slices of state space. Circles indicate initial
conditions that get close to the target set (all coordinates less than 0.25 in absolute value) when
our controller is applied and dots correspond to the application of the LQR controller. Figures
[12(c)| and [12(d)| illustrate the performance of the controllers for two initial conditions for which
our controller succeeds, but the LQR controller fails. The dashed lines in the figure represent the
trajectory of the geometric center of the torso and the filled in circle represents the torso position
at the goal state.

7 Discussion and Conclusion

We presented an approach for designing feedback controllers that maximize the size of the BRS
by posing an infinite-dimensional LP over the space of non-negative measures. Finite-dimensional
approximations to this LP in terms of SDPs can be used to obtain outer approximations of the
largest achievable BRS and polynomial control laws that approximate the optimal control law. In
contrast to previous approaches relying on Lyapunov’s criteria for stability, our method is inherently
convex and does not require feasible initialization.

7.1 Challenges

The most significant challenge confronting our approach at the moment is the scaling of our al-
gorithm with the dimension of the system. The uBot example described in Section [6.6] with its
eight states and three inputs is the largest example that existing solvers for SDPs are likely to
manage without exploiting additional structure (e.g. symmetry) in the problem. However, recent
developments, such as the release of MOSEK and SDPARA [Makoto et al., 2003|, suggest that
solvers that exploit sparsity or parallelization may allow our approach to scale to larger dimensions
in the near future.

Additionally, the immaturity of existing SDP solvers means that numerical issues related to the
scaling of problem data inevitably arise. Preprocessing of SDPs and SOS programs is still, in fact,
an active area of research. We sometimes found it useful, for example, to scale the problem data
to lie approximately within the unit ball.

7.2 Extensions

We are currently pursuing several extensions to our presented approach. Since we do not rely upon
a linearization or a feasible initialization, our approach should be extendable to the case of hybrid
dynamical systems. This could allow our approach to be applied to walking or running robots.
Also, though we are constructing feedback control laws, during most robotic tasks, direct access to
the state is unavailable. An extension that allows for output feedback would therefore be valuable.

We are also considering extensions that improve upon the presented convergence result. Inner
approximations of the BRS are more useful than outer approximations during control tasks. The
construction of control laws with associated inner approximations of the BRS is a problem we are
currently pursuing. Ideally, a rate of convergence for the inner approximation and its associated
feedback controller could be constructed.

As described in the Section [I] our method can be used to augment existing feedback motion
planning techniques that rely on sequencing together BRSs in order to drive some desired set
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Figure 12: A comparison of the performance of the infinite-horizon LQR controller with the controller designed using
our approach on the modified system dynamics described in Equation for the uBot system. Figures and
12(b)| show initial conditions sampled from two-dimensional slices of the state space. Circles (dOtS) represent
points that pass near the target set when our controller (LQR) is applied. We are able to strictly
improve the performance of the LQR controller except at two points. Figures [12(c)| and [12(d)|
depict the performance of our controller and the LQR controller from two sample initial conditions.
The dashed lines in the figure represent the trajectory of the geometric center of the torso and the
filled in circle represents the torso position at the goal state.
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of initial conditions to a given target set. We are currently investigating whether our proposed
approach reduces the number of distinct controllers required for practical robotic motion planning
tasks.

Finally, another promising direction for future research is to account for uncertainty and dis-
turbances in the dynamics. This uncertainty could be stochastic or adversarial in nature and is an
important consideration for many practical applications.
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